Math 416 Lecture 14

Poisson / G(x) / 1 Queues

Suppose the arrivals are a Poisson process with arrival rate λ and expected time $1/\lambda$ between arrivals and with N_t the number of arrivals at time t.

Suppose the service times are mutually independent and have a cumulative distribution $G(x)$ and density function $g(x)$ and expected service time $1/\mu$.

Suppose there is one server.

The queue length X_t at time t is the number of people waiting plus the person, if any, being served. For each j, we want the long-term probability $\pi_j = \lim_{n \to \infty} P[X_n = j]$ that the queue length is j. The p^j in Lecture 13 is π_j here. Let $\pi_{\geq 1}$ be the long-term probability of having 1 or more in the queue.

Let $\rho = \lambda/\mu$. If $\rho > 1$, then $\rho > 1$ and the queue will grow forever. Hence we will assume $\rho < 1$. In this case, under rather general regularity conditions, the limit probabilities π_n exist.

Lemma. If $\rho < 1$, $\pi_{\geq 1} = \lambda/\mu = \rho$, $\pi_0 = 1 - \rho$. \(\square\)

We now calculate π_1, π_2, ...

Let Y_n be the number of people in the queue (including the one being served) just after the n^{th} departure = the number of people waiting when the n^{th} person has been served. Y_n has both a discrete state space, $j \in \{0, 1, 2, \ldots\}$, and a discrete time set $n \in \{0, 1, 2, \ldots\}$. Since Y_n is a subsequence of X_n, $\pi_j = \lim_{n \to \infty} P[X_n = j] = \lim_{n \to \infty} P[Y_n = j]$.

Since the arrivals are exponential and the service times independent, the queue is memoryless — the time to the next arrival and the current customer’s service time do not depend on the past history. Hence Y_n is a Markov chain and we can compute the long-term probabilities π_j from the usual linear system of Markov chain steady-state equations.

First we calculate the expected probability q_k that k people arrive during the time it takes to service a customer. We split on the possible service times t.

$$q_k = \int_0^\infty P[N_t = k]P[\text{service time} = t]dt \quad \text{(imprecise)}$$

$$= \int_0^\infty e^{-\lambda t} \frac{\lambda^t}{k!} g(t)dt.$$ In the discrete case with possible service times t_1, t_2, \ldots, t_n with probabilities $p_i(t)$ we have

$$q_k = \sum_{i=t_1,t_2,\ldots,t_n} e^{-\lambda t} \frac{\lambda^t}{k!} p(t).$$ Now the transition probabilities T_{ij} from a state $Y_n = i$ to a next state $Y_{n+1} = j$.

Case $T_{0,0}$, $Y_0 = 0$ and $Y_{n+1} = k$. Since $Y_0 = 0$, there is an expected $1/\lambda$ wait until customer $n+1$ arrives. When he departs, the k people left in the queue must have arrived when he was being served. This has probability $T_{0,k} = q_k$.

Case $T_{1,k}$, $Y_1 = 1$ and $Y_{n+1} = k$. In this case customer $n+1$ is the sole member of the Y_n queue and when he departs, the k people left in the queue must have arrived when he was being served. This has probability $T_{1,k} = q_k$.

The transition matrix T_{ij} of probabilities that the queue length between departures goes from j to k is:

i	$j=0$	1	2	3	...
0	q_0	q_1	q_2	q_3	...
1	q_0	q_1	q_2	q_3	...
2	0	q_0	q_1	q_2	...
3	0	0	q_0	q_1	...
...

Recall that the long-term probabilities, if they exist, are steady-state probabilities, i.e., they form a probability distribution which remains unchanged from one step to the next. Hence, as before,

$$\pi_0 = \pi_0 q_0 + \pi_1 q_0$$
$$\pi_1 = \pi_0 q_1 + \pi_1 q_1 + \pi_2 q_0$$
$$\pi_2 = \pi_0 q_2 + \pi_1 q_2 + \pi_2 q_1 + \pi_3 q_0$$

Solving and using the Lemma that $\pi_0 = 1-\rho$ gives

$$\pi_0 = (1-\rho)$$
$$\pi_1 q_0 = \pi_0 - \pi_0 q_0 \quad \Rightarrow \quad \pi_1 = (1/q_0)(\pi_0 - \pi_0 q_0)$$
$$\pi_2 = (1/q_0)(\pi_1 - \pi_0 q_1 - \pi_1 q_1)$$
$$\pi_3 = (1/q_0)(\pi_2 - \pi_0 q_2 - \pi_1 q_2 - \pi_2 q_1)$$
$$\pi_n+1 = (1/q_0)(\pi_n - \pi_0 q_n - \pi_1 q_n - \pi_2 q_n - \pi_3 q_n)$$

Customers arrive at a one-counter bank at a rate of 5 an hour. 90% want to cash a check which takes 5 minutes (1/12 an hour). 10% want to set up a new account which takes 30 minutes (1/2 an hour). Find the long-term probabilities π_0, π_1, π_2 of having 0, 1, or 2 people standing in line (waiting or being served). $\lambda = 5$, $1/\mu = \text{expected service time} = 5/(.9)+30/(.1)=30/4$. $\mu = \text{service rate} = 4/30 \text{ per minute} = 8 \text{ per hour}$. $\rho = \lambda/\mu = 5/8$. $\mathbb{E} = \sum_{t=0}^{\infty} e^{-0.5 t} / t! - p(t) = e^{-0.5}(.9) + e^{-0.5}(.1) = .6015$ $q_1 = \sum_{t=1}^{\infty} e^{-0.5 t} / t! - p(t)$
\[e^{-5/12}(5/12)(.9) + e^{-5/2}(5/2)(.1) = .2677 \]
\[\pi_0 = 1 - \rho = 1 - 5/8 = 3/8 = 37.5\% \]
\[\pi_1 = (1/q_0)(\pi_0 - \rho q_0) = 24.84\% \]
\[\pi_2 = (1/q_0)(\pi_1 - \pi_0 q_1 - \pi_1 q_1) = 13.55\% \]

G(x) / Poisson / 1 Queues

Suppose the times between arrivals are independent with cumulative distribution \(G(x) \) and density function \(g(x) \) and rate \(\lambda \) and average time \(1/\lambda \). Suppose that while there are customers to be served, the service times are a Poisson process with rate \(\mu \) and average time \(1/\mu \) between arrivals. Suppose there is one server.

Let \(Y_n \) be the number of people in the queue just before the \(n \)th arrival. If there is no one in the queue when the \(n \)th customer arrives, \(Y_n = 0 \). Since the arrivals are independent and the service times are exponential, the queue is memoryless. Hence it is a Markov chain and we can compute the long-term probability \(\pi_i = \lim_{n \to \infty} P[Y_n = i] \) that the queue length will be \(i \) from the usual linear system of Markov chain equations.

As before, let \(\rho = \lambda/\mu \). If \(\lambda > \mu \), then \(\rho > 1 \) and the queue will grow forever. Hence we will assume \(\rho < 1 \). Under rather general regularity conditions, the limit probabilities \(\pi_i \) exist.

Let \(k \) be the number of customers served between the arrival times of \(Y_n \) and \(Y_{n+1} \). Then \(Y_{n+1} = Y_n + 1 - k \) is the \(Y_n \) customers in the queue at the time of the \(n \)th arrival + the \(1 \) \(n \)th arrival – the \(k \) customers who have been served.

For \(Y_{n+1} > 0 \), let \(q_k \) be the probability that exactly \(k \) customers are served between successive arrivals \(Y_n \) and \(Y_{n+1} \). We split on the possible times \(s \) between arrivals.

\[q_k = \int_0^\infty P(k \text{ customers are served}|\text{time}=s)P(\text{time between arrivals}=s)ds \]
\[= \int_0^\infty \frac{e^{-\mu s} (\mu s)^k}{k!} g(s)ds \]

In the case of a discrete set \(\{s_0, s_1, \ldots\} \) of service times with probabilities \(p(s_0), p(s_1), \ldots \) this becomes

\[\sum_{s \in \{s_0, s_1, \ldots\}} \frac{e^{-\mu s} (\mu s)^k}{k!} p(s) \]

Now calculate the transition probabilities \(T_{ij} \) from a state \(Y_n = i \) to a state \(Y_{n+1} = j \).

Since there are \(Y_n \) customers before the \(n \)th arrival, there are \(Y_n + 1 \) customers just after the \(n \)th arrival. Thus \(Y_{n+1} \leq Y_n + 1 \), in fact \(Y_{n+1} = Y_n + 1 - k \) where \(k \) is the number who get served between the two arrivals.

Case \(j > i + 1 \). \(T_{i,j} = 0 \). This case is impossible since \(j = Y_{n+1} \leq Y_n + 1 = i + 1 \).

Case \(j = i + 1 \). \(T_{i,i+1} = q_0 \). Thus \(Y_n = i, Y_{n+1} = i + 1 \). Customer \(n \) arrives, the queue increases to \(i + 1 \), 0 people get served, the queue still has size \(i + 1 \) when customer \(n + 1 \) arrives. This has probability \(q_0 \).

Case \(0 < j = i \). \(T_{i,i} = T_{i,i+1} = q_1 \). Thus \(Y_n = i, Y_{n+1} = i \). Customer \(n \) arrives, the queue increases to \(i + 1 \), exactly 1 person gets served, the queue again has size \(i \) when customer \(n + 1 \) arrives. This has probability \(q_1 \).

Case \(0 < j = i + 1 - k \). \(T_{i,i+1-k} = q_k \).

Customer \(n \) arrives, the queue increases to \(i + 1 \), exactly \(k \) people get served, the queue size is down to \(i + 1 - k \) when customer \(n + 1 \) arrives. This has probability \(q_k \).

Case \(j = 0 \). \(T_{i,0} = r_{i+1} = 1 - (q_0 + q_1 + \ldots + q_i) \).

Thus \(Y_n = i \) and \(Y_{n+1} = 0 \). Customer \(n \) arrives, the queue increases to \(i + 1 \). If the queue size goes down to 0, then all \(i + 1 \) get served. This has some probability \(r_{i+1} \). This isn’t \(q_{i+1} \) since \(q_{i+1} \) was calculated under the assumption that \(Y_{n+1} > 0 \). But if the queue size is \(i + 1 \), then the number \(k \) which must be one of \(0, 1, \ldots, i + 1 \). Thus

\[\sum_{j=0}^{i+1} \pi_j q_j = 1 - (q_0 + q_1 + \ldots + q_i) \]

Thus the transition matrix \(T_{jk} \) of probabilities that the queue length between departures goes from \(j \) to \(k \)

<table>
<thead>
<tr>
<th>j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\[(\pi_0, \pi_1, \pi_2, \ldots) = (\pi_0, \pi_1, \pi_2, \ldots) \]

\[\pi_0 = \pi_0 r_1 + \pi_0 r_2 + \pi_2 r_2 + \pi_3 r_3 + \ldots \]
\[\pi_1 = \pi_0 q_0 + \pi_0 q_1 + \pi_1 q_1 + \pi_3 q_2 + \pi_2 q_2 + \pi_3 q_3 + \ldots \]
\[\pi_2 = \pi_1 q_0 + \pi_1 q_1 + \pi_3 q_2 + \pi_3 q_3 + \pi_4 q_2 + \pi_3 q_3 + \ldots \]
\[\pi_3 = \pi_2 q_0 + \pi_3 q_1 + \pi_4 q_2 + \pi_3 q_3 + \ldots \]

Lemma. If \(\rho = \lambda/\mu < 1 \), \(\pi_j = (1-\beta)\beta^j \) where \(\beta \in (0,1) \) is the solution of the equation:

\[\beta = q_0 + q_1 \beta + q_2 \beta^2 + q_3 \beta^3 + \ldots \]

Since \(\pi_0 + \pi_1 + \pi_2 + \ldots = 1 \), \(\pi_0 = 1 - (\pi_1 + \pi_2 + \ldots) \).

Since \(r_{i+1} = 1 - (q_0 + q_1 + \ldots + q_i) \), \(r_1 = 1 - q_0 \), \(r_2 = 1 - (q_0 + q_1) \), \(r_3 = 1 - (q_0 + q_1 + q_2) \). \ldots

Hence the first line \(\pi_0 = \pi_0 r_1 + \pi_1 r_2 + \pi_2 r_3 + \ldots \) is just 1 minus the sum of the remaining lines and hence is dependent.

Thus we need only show that \(\pi_j = (1-\beta)\beta^j \) is a solution for the remaining equations. The third line is typical.

To prove

\[\pi_2 = \pi_1 q_0 + \pi_2 q_1 + \pi_3 q_2 + \ldots \]
Start with the right side and use definition of β and π_i.

$$
\pi_1 q_0 + \pi_2 q_1 + \pi_3 q_2 + ... \\
= (1 - \beta) \beta^0 q_0 + (1 - \beta) \beta^1 q_1 + (1 - \beta) \beta^2 q_2 + ... \\
= (1 - \beta) [q_0 + \beta^0 q_1 + \beta^1 q_2 + ...] \\
= (1 - \beta) [q_0 + q_1 \beta + q_2 \beta^2 + ...] \\
= (1 - \beta) [\beta^0] = (1 - \beta) \beta^2 = \pi_2
$$