Find the derivative of each of these, but DO NOT SIMPLIFY. Calculators are not allowed. Passing is 5 out of 6. Passed exams will be given to your instructor. Allowed time: 15 minutes.

1. \(y = (x^2 + 1)^{-3/5} \)
 \[
y' = -\frac{3}{5} (x^2 + 1)^{-8/5} - 2x
 \]

2. \(y = (x^2)^{-8/9} \)
 \[
y' = -\frac{16}{q} x^{-40/9}
 \]

3. \(y = \cot(x) \sin(2x - 1) \)
 \[
y' = -\csc^2(x) \sin(2x-1) + 2 \cot(x) \cos(2x-1)
 \]

4. \(f(x) = \frac{2}{3} \cos(x^{-1/4} - 2x) \)
 \[
f' = -\frac{2}{3} \sin \left(x^{-1/4} - 2x \right) \left(-\frac{1}{4} x^{-5/4} - 2 \right)
 \]

5. \(y = \frac{x^{3/7}}{x^2 - 3x - 1} \)
 \[
y' = \frac{\frac{3}{7} x^{-4/7} (x^2 - 3x - 1) - x^{3/7} (2x - 3)}{(x^2 - 3x - 1)^2}
 \]

6. \(h(t) = t^5(t^2 - 2)^3 + 0.8(27t^{0.15}) - t \)
 \[
h' = 5t^4(t^2 - 2)^3 + 3t^3(2t^2 - 2) + 0.8 \cdot 0.15(27t)^{0.14} \cdot 27 - 1
 \]
Calculus I (Math 241) – Test 1

Problem 1. [10 Points] Find the equation of the tangent line to the graph of the function \(f(x) = x^2 \sin x \) at \(x = \pi/3 \).

\[
\begin{align*}
\frac{d}{dx}\left(\frac{\pi}{3}\right) &= \frac{\pi^2}{9} \frac{\sqrt{3}}{2} = \frac{\pi^2}{18} \\
\frac{d}{dx}(x) &= 2x \sin x + x^2 \cos x \\
\frac{d}{dx}\left(\frac{\pi}{3}\right) &= \frac{2\pi}{3} \frac{\sqrt{3}}{2} + \frac{\pi^2}{9} \frac{1}{2} = \frac{\pi\sqrt{3}}{3} + \frac{\pi^2}{18} \\
\end{align*}
\]

\[t(x) = \left(\frac{\pi\sqrt{3}}{3} + \frac{\pi^2}{18}\right)(x - \frac{\pi}{3}) + \frac{\pi \sqrt{3}}{18} \quad \text{(Equation of tangent line)} \]

Problem 2. [5 Points] Spell out in exact mathematical terms the meaning of the statement

\[\lim_{x \to a} H(x) = L, \]

assuming that the function \(H(x) \) is defined on an open interval that contains \(a \), but possibly not at \(a \) itself.

For all \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that \(0 < |x - a| < \delta \) implies that \(|H(x) - L| < \varepsilon \).

Problem 3. [10 Points] Work out the limit of the difference quotient

\[\lim_{x \to a} \frac{\sqrt{x} - \sqrt{a}}{x - a} \]

for \(a > 0 \).

\[
\begin{align*}
\lim_{x \to a} \frac{\sqrt{x} - \sqrt{a}}{x - a} &= \lim_{x \to a} \frac{(\sqrt{x} - \sqrt{a})(\sqrt{x} + \sqrt{a})}{(x - a)(\sqrt{x} + \sqrt{a})} \\
&= \lim_{x \to a} \frac{x - a}{(x - a)(\sqrt{x} + \sqrt{a})} \\
&= \frac{1}{2 \sqrt{a}}
\end{align*}
\]

Suppose \(f(a) = A \) and \(f(b) = B \), and \(f \) is defined and continuous on the closed interval with end points \(a \) and \(b \). If \(C \) is in between \(A \) and \(B \), then there exists some \(c \) between \(a \) and \(b \) such that \(f(c) = C \).

Problem 5. [15 Points] Consider the polynomial \(p(x) = x^3 - 9x^2 + 23x - 14 \).

1. Show that \(p(x) \) has a zero between 0 and 1.

2. Use \(x = 1 \) as a first guess for the zero, and apply Newton's method to improve the guess once.

\[
p(0) = -14 \quad p(1) = 1 - 9 + 23 - 14 = 1
\]

As a polynomial, \(p(x) \) is continuous on \([0, 1]\), \(p(0) < 0 \) and \(p(1) > 0 \). According to the Intermediate Value Theorem, \(f(c) = 0 \) for some \(c \) between 0 and 1.

\[
p'(x) = 3x^2 - 18x + 23 \quad p'(1) = 8 \quad x_0 = 1
\]

\[
x_1 = x_0 - \frac{p(x_0)}{p'(x_0)} = 1 - \frac{1}{8} = 7/8 \quad \text{(This is the improved guess.)}
\]
Problem 6. [15 Points] Consider the curve given by the equation

\[x^2 y + xy^3 - 6 = 0. \]

1. Find \(dy/dx \) by implicit differentiation.

2. Note that \((2, 1)\) is a point on the curve. Use approximation by differentials to find an approximate value for \(y(2.3) \).

\[(x^2 + 3xy^2) \frac{dy}{dx} = - \left[2xy + y^3 \right] \]

\[\frac{dy}{dx} = - \frac{2xy + y^3}{x^2 + 3xy^2} \]

\[\left. \frac{dy}{dx} \right|_{(x,y)=(2,1)} = - \frac{4 + 1}{4 + 6} = -\frac{5}{10} = -\frac{1}{2} \]

Check: \(2 \cdot 1 + 2 \cdot 1^3 - 6 = 0 \)

\[y(2.3) \approx y(2) + y'(2) (2.3 - 2) \]

\[= 1 - \frac{1}{2} (0.3) \]

\[= 0.85 \]
Problem 7. [10 Points] A plane flying horizontally at an altitude of 3000 meters (3 km) and a speed of 800 km/h passes directly over Diamond Head. Find the rate at which the distance from the plane to Diamond Head is increasing when it is 4 km away from Diamond Head.

\[D(t) \rightarrow \text{horizontal distance } x(t) \]
\[3000 \text{m} = 3 \text{km} \]
\[\text{actual distance } D(t) \]

\[\frac{dD}{dt} = \frac{dD}{dx} \cdot \frac{dx}{dt} \]
\[= \frac{x}{\sqrt{x^2 + 9}} \cdot 800 \]
\[= \frac{17}{4} \cdot 800 \]
\[= 200 \sqrt{17} \]
\[\approx 530 \]

At the given moment, the distance increases at a rate of 530 km/h.