Find the derivative of each of these. (DO NOT SIMPLIFY. Calculators are not allowed. Passing is a score of 6. Passed exams will be given to your instructor. Allowed time: 15 minutes.)

1. \(y = (\sqrt{x})^{2/5} \)

 \[y' = \frac{2}{5} (\sqrt{x}^2)^{4/5} \cdot 2x \]

2. \(y = x^3 \tan x \)

 \[y' = 3x^2 \tan x + x^3 \sec^2 x \]

3. \(y = x^{1/2} \cos x \)

 \[y' = \frac{1}{2} x^{-1/2} \cos x - x^{1/2} \sin x \]

4. \(y = (2y - 7)^{1/3} + 18y^2 - 2y^2 \sqrt{5y^2 + 3.2y + 5.7} \)

 \[= 6y^2 - 4(2y - 7)^3 + 0 + \frac{1}{11} (-1.5y^4 + 3.2y + 5.7)^{10/11} \cdot (-6y^2 - 5.5) \]

5. \(y = (x, y)^{3/4} \)

 \[y' = -\frac{5}{6} \left(\frac{x}{2} \right)^{-6/5} \cdot \frac{1}{2} \]

6. \(y = \frac{\sqrt{x^2 + 1}}{x + 2} \)

 \[y' = \frac{(x^2 + 1)(x + 2) - (x^2 + y)}{(x + 2)^2} \]
Calculus I (Math 241) – Test 1

Problem 1. [10 Points] Find the equation of the tangent line to the graph of the function \(f(x) = \sin x \cos x \) at the point \(x = \pi/6 \).

\[
\begin{align*}
\frac{d}{dx}(\pi/6) &= \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4} \\
\frac{d}{dx}(x) &= \cos^2 x - \sin^2 x \\
\frac{d}{dx}(\pi/6) &= \frac{3}{4} - \frac{1}{4} = \frac{1}{2}
\end{align*}
\]

The tangent line is

\[
L(x) = \frac{1}{2} \left(x - \frac{\pi}{6} \right) + \frac{\sqrt{3}}{4}
\]
Problem 2. [10 Points] Use first principles (the definition of the derivative and the computation of the limit of the appropriate difference quotient) to find the derivative of the function \(f(x) = \sqrt{x + 1} \) at \(x = a \) for any \(a > -1 \).

\[
\frac{d}{dx} f(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{\sqrt{x+1} - \sqrt{a+1}}{x-a} \cdot \frac{\sqrt{x+1} + \sqrt{a+1}}{\sqrt{x+1} + \sqrt{a+1}}
\]

\[
= \lim_{x \to a} \frac{(x+1) - (a+1)}{(x-a)(\sqrt{x+1} + \sqrt{a+1})}
\]

\[
= \lim_{x \to a} \frac{1}{\sqrt{x+1} + \sqrt{a+1}}
\]

\[
\Rightarrow \frac{d}{dx} f(a) = \frac{1}{2\sqrt{a+1}}
\]
Problem 3. [10 Points] Prove that the equation
\[x^5 + x^4 - x - 2 = 0 \]
has a solution, and provide an interval of length at most 2 in which one solution will lie. (State which theorem you are applying, and make sure to indicate that all of the assumptions in the theorem are satisfied.)

Set \(f(x) = x^5 + x^4 - x - 2 \)

\[f(1) = -1 \]
\[f(2) = 32 + 16 - 2 - 2 > 0 \]

As a polynomial, \(f(x) \) is continuous. Also \(f(1) < 0 \) and \(f(2) > 0 \). According to the intermediate value theorem, there exists some \(c \in (1, 2) \) such that \(f(c) = 0 \). This \(c \) is a solution of the equation in the problem.
Problem 4. [10 Points] Find all asymptotes of the function

\[g(x) = \frac{x(x^2 + 1)}{x^2 - 1} \]

and provide a rough sketch. It should show at least the intercepts and asymptotes, and where the function positive, resp. negative.

\[g(x) = \frac{x (x^2 + 1)}{(x+1)(x-1)} = x \frac{(1 + \frac{1}{x^2})}{(1 + \frac{1}{x})(1 - \frac{1}{x})} \]

Vertical asymptotes at \(x = \pm 1 \).

Zero at \(x = 0 \).

Sign change at \(x = 0, \pm 1 \).

\(\lim_{x \to 0} g(x) = -\infty \quad \lim_{x \to \pm 1} g(x) = -\infty \).

There is a slant asymptote with slope 1 as \(x \to \pm \infty \) and \(g \to \infty \) as \(x \to \pm \infty \)

Actually,

\[g(x) = \frac{x^3 + x}{x^2 - 1} = \frac{x^2 + 2x}{x^2 - 1} = x + \frac{2x}{x^2 - 1} \]

so that the slant asymptote is \(y = x \).
Problem 5. [10 Points] Consider the function arcsin \(x \), the inverse of the sine function.

1. Decide on a domain and range for arcsin \(x \). The answer is not unique.
2. Sketch the graph of arcsin \(x \) using your domain.
3. Find arcsin' \(x \), the derivative of the function, with your domain. Show all work required to derive the solution.

\[
\sin (\arcsin x) = x
\]

\[
\cos (\arcsin x) \cdot \arcsin x = 1
\]

\[
\arcsin' x = \frac{1}{\cos (\arcsin x)}
\]

\[
\arcsin' x = \frac{1}{\sqrt{1-x^2}}
\]
Problem 6. [10 Points] A ladder 12 meters long rests against a vertical wall. If the bottom of the ladder is 1 meter from the wall and it slides away from the wall at a speed of 2 meters per second, how fast is the top of the ladder sliding down?

\[x^2 + y^2 = 12^2 \]
\[\frac{dx}{dt} = 2 \text{ m/sec} \]

\[2x \frac{dx}{dt} + 2y \frac{dy}{dt} = 0 \]
\[\frac{dy}{dt} = -\frac{x}{y} \frac{dx}{dt} \]

If \(x = 1 \), then \(y = \sqrt{1143} \)

\[\frac{dy}{dt} = -\frac{1}{\sqrt{1143}} \cdot 2 \text{ m/sec} \]

At the given time the top slides down at a speed of \(\frac{2}{\sqrt{1143}} \) m/sec.
Problem 7. [10 Points] Below you see the graph of the function \(h(x) \). Fill in the table. The answer might be a number, \(\pm \infty \), ‘yes’ or ‘no’, ‘dne’ (does not exist), or ‘dna’ (does not apply).

\(a \)	\(\lim_{x \to a^-} h(x) \)	\(\lim_{x \to a^+} h(x) \)	\(\lim_{x \to a} h(x) \)	Continuous?
2	d.n.a	2	d.n.a	yes
0	0	2	d.n.e	d.n.a
0.5	2	2	2	yes
1	2	1	d.n.e	no
2	2	2	2	no
3	3	\(\infty \)	d.n.e	no
4	1	1	1	yes