1. **a)** Prove that if \(\{ L_i \}_{i \in I} \) is a family of left ideals in a ring \(R \) such that \(R \) is generated as an \(R \)-module by \(\bigcup I L_i \), then there is a **finite** subset \(J \subseteq I \) such that \(R \) is generated by \(\bigcup J L_i \). (**HINT:** \(R \) is a cyclic \(R \)-module generated by 1.)

b) Prove that if a ring \(R \) has a minimal (proper) left ideal \(L \) which is not contained in any proper (two-sided) ideal, then \(R \) is a **finite** direct sum of left ideals isomorphic to \(L \) and \(R \) has no non-trivial proper ideals.

2. **a)** Let \(R_1 \) and \(R_2 \) be ideals in a ring \(R \) such that \(R = R_1 \times R_2 \). (Refer to problem 2 of the October 7 homework and also to pp. 130–131 of Hungerford.) Prove that there exist ideals \(0 \neq I, J \subseteq R_1 \) such that \(R_1 = I \oplus J \) if and only if there exists an idempotent \(e \) in the center of \(R \) such that \(0 \neq e \in R_1 \) and \(eR_1 \subset R_1 \).

b) Suppose that \(R = R_1 \times \cdots \times R_s = P_1 \times \cdots \times P_t \), where the \(R_i \) and \(P_j \) are indecomposable as (two-sided) ideals (or, equivalently, do not contain any central idempotent except the one that generates them). Prove that \(s = t \) and the \(P_j \) can be renumbered so that for all \(i, R_i = P_i \).

Definition. An \(R \)-module \(M \) is called **simple** if \(M \neq 0 \) and \(M \) has no non-trivial proper submodules.

3. Prove that a left \(R \)-module is simple if and only if it is isomorphic to \(R/L \), where \(L \) is a maximal left ideal.

Fact. It can be shown using Zorn’s Lemma that if \(r \) is a non-invertible element in a ring then there exists a maximal left ideal containing \(r \) and a maximal right ideal containing \(r \).

4. Let \(R \) be a ring and \(r \in R \). Prove that the following conditions are equivalent and that the set of \(r \in R \) satisfying these conditions forms a (two-sided) ideal.

 (1) \(rM = 0 \) for all simple left \(R \)-modules \(M \).
 (2) \(Nr = 0 \) for all simple right \(R \)-modules \(N \).
 (3) \(\varphi(r) = 0 \) for all homomorphisms \(\varphi \) from \(R \) into a simple left \(R \)-module.
 (4) \(\psi(r) = 0 \) for all homomorphisms \(\psi \) from \(R \) into a simple right \(R \)-module.
 (5) \(r \) belongs to all maximal left ideals in \(R \).
 (6) \(r \) belongs to all maximal right ideals in \(R \).
 (7) For all \(x \in R \), \(1 - xr \) is invertible.
 (8) For all \(x \in R \), \(1 - rx \) is invertible.

5. Prove that if a left ideal \(L \) consists entirely of nilpotent elements then \(L \) is contained in every maximal left ideal.

WARNING: This does not mean that every nilpotent element in a ring belongs to all maximal left ideals.
1. **b)** If L is not contained in any proper (two-sided) ideal then the ideal generated by L must be R. This ideal is LR, which is the right ideal spanned by $\bigcup \{ Lr \mid r \in R \}$. By part a), then, there exist elements $r_1, \ldots, r_n \in R$ such that $R = Lr_1 + \cdots + Lr_n$. By omitting any superfluous elements r_i in this sum, we may suppose that for all i,

$$Lr_i \not\subseteq Lr_1 + \cdots + \widehat{Lr_i} + \cdots + Lr_n.$$

Now let $\varphi : L \to Lr_i$ be given by $\ell \mapsto \ell r_i$. Then φ is an epimorphism and $\text{Ker} \varphi$ is a left ideal contained in L, so since L is a minimal left ideal either $\text{Ker} \varphi = 0$ or $Lr_i \neq 0$ otherwise it could be omitted from the sum above. Thus φ is monic, so $Lr_i \approx L$. In particular, Lr_i is a simple left R-module. It then follows that

$$Lr_i \cap (Lr_1 + \cdots + \widehat{Lr_i} + \cdots + Lr_n) = 0. \quad (\text{why?})$$

Since this holds for all i it follows that $R = Lr_1 \oplus \cdots \oplus Lr_n$.

Now suppose that I is a non-trivial ideal in R. Note that since R is a finite direct sum of artinian modules (the Lr_i are certainly artinian, since they are simple), then R is artinian. It then follows that I must contain a minimal left ideal L'. Thus I must contain the ideal $L'R$ generated by L'. But as seen above, $L'R = R$. Thus $I = R$.