IN THIS COURSE ALL RINGS AND MODULES ARE UNITARY.
Furthermore, if R and S are rings and $\rho: R \to S$ is a ring morphism, it is required that $\rho(1) = 1$. Likewise if we say that R is a subring of S this means (among other requirements) that they have the same identity element.

1. a) Let $\rho: R \to R'$ be a morphism of commutative rings. Prove that if p' is a prime ideal in R' then $\rho^{-1}(p')$ is prime in R.

b) Let R be a subring of R'. Prove that if p' is a prime ideal in R' then $p' \cap R$ is a prime ideal in R.

Notation. If p is a prime ideal in a commutative ring R and $S = R \setminus p$, then we write $M_p = S^{-1}M$.

Lemma [Hungerford, Theorem 2.2, p 378]. If S is a multiplicative set in a commutative ring R and a is an ideal such that $a \cap S = \emptyset$ then there exists at least one ideal p maximal with respect to the properties $p \supseteq a$ and $p \cap S = \emptyset$. Furthermore, any such ideal is prime.

2. Let M be an R-module and $m \in M$ and let $\text{ann} \, m = \{ r \in R \mid rm = 0 \}$. Prove that $m/1 \neq 0 \in S^{-1}M$ if and only if $S \cap \text{ann} \, m = \emptyset$.

3. Let M, N, P be modules over a commutative ring R. Prove that:

(1) If $m_1, m_2 \in M$, then $m_1 = m_2$ if and only if $m_1/1 = m_2/1 \in M_m$ for all maximal ideals m.

(2) $M = 0$ if and only if $M_m = 0$ for all maximal ideals m.

(3) Suppose that $N, P \subseteq M$. Then $N = P$ if and only if $N_m = P_m$ for all maximal ideals m.

(4) If $\varphi \in \text{Hom}_R(M, N)$ then φ is a monomorphism [epimorphism] if and only if $\varphi_m: M_m \to N_m$ is monic [epic] for all maximal ideals m.
6. Recall the following result [Hungerford, Theorem 2.2, p378]: If \(S \) is a multiplicative set in a commutative ring \(R \) and \(a \) is an ideal such that \(a \cap S = \emptyset \) then there exists at least one ideal \(p \) maximal with respect to the properties \(p \supseteq a \) and \(p \cap S = \emptyset \). Furthermore, any such ideal is prime.

\((\Rightarrow)\): Suppose that \(\text{Ass} M = \{p\} \). Then by the Lemma given in the homework, for every \(m \neq 0 \in M \), \(\text{ann} m \subseteq p \) and every prime ideal containing \(\text{ann} m \) contains \(p \). From this it follows first that if \(s \notin p \) then \(sm \neq 0 \), showing that \(m \notin \ker \theta \), where \(\theta: M \to M_p \) is the canonical map. Furthermore, let \(r \neq 0 \in p \) and let \(S = \{r^k \mid k \geq 1\} \). If \(S \cap \text{ann} m = \emptyset \) then by the above result from Hungerford there exists a prime ideal \(q \) with \(q \supseteq \text{ann} m \) and \(q \cap S = \emptyset \). But then \(q \supseteq p \) and \(r \notin q \), a contradiction. Thus there exists an element \(r^k \in S \cap \text{ann} m \), so \(r^km = 0 \). Since \(p \) is finitely generated (because \(R \) is noetherian) it then follows easily that \(p^{k'}m = 0 \) for some \(k' \).

\((\Leftarrow)\): Now suppose the stated conditions hold and let \(q \in \text{Ass} M \). Then \(q = \text{ann} m \) for some \(m \). By assumption, for some \(k \), \(p^k \subseteq \text{ann} m = q \) Then \(p \subseteq q \) since \(q \) is prime. On the other hand, if \(s \notin p \) then \(sm \neq 0 \) since \(M \to M_p \) is monic and thus \(s \notin q \). Therefore \(q = p \).