1. Let R and R' be rings.
 a) Prove that there exists a multiplication on $R \otimes \mathbb{Z} R'$ such that
 \[(r_1 \otimes r'_1)(r_2 \otimes r'_2) = r_1r_2 \otimes r'_1r'_2.\] Thus $R \otimes \mathbb{Z} R'$ can be considered as a ring.
 b) Prove that if R and R' are commutative, then the diagram
 \[
 \begin{array}{ccc}
 \mathbb{Z} & \longrightarrow & R' \\
 \downarrow & & \downarrow \\
 R & \longrightarrow & R \otimes \mathbb{Z} R'
 \end{array}
 \]
 is a push-out in the category of commutative rings. (Here the maps out of \mathbb{Z} are the only ones possible and the bottom horizontal map, for instance, is given by $r \mapsto r \otimes 1$.)

2. Let A be an R-algebra and let $f \in R[X]$ and $B = R[X]/(f)$. By abuse of notation, we will also use f to denote its image in $A[X]$. Prove that $A \otimes_R B \approx A[X]/(f)$.

3. If C is the field of complex numbers, prove that $i \otimes 1 + 1 \otimes i$ is a zero divisor in $C \otimes \mathbb{R} C$.

4. Let E and F be extensions of a field k, let $m = [E : k]$ and $n = [F : k]$. (These may possibly be infinite cardinals.) Then we can think of $E \otimes_k F$ as either a k-algebra, an E-algebra, or an F-algebra.
 a) Prove that $\dim_E E \otimes_k F = n$, $\dim_F E \otimes_k F = m$ and $\dim_k E \otimes_k F = mn$.
 b) Prove that if e_1, \ldots, e_r are elements of E linearly independant over k, and f_1, \ldots, f_s are k-linearly independant elements of F, then the rs elements $e_1 \otimes f_1$, $e_1 \otimes f_2, \ldots, e_r \otimes f_s$ of $E \otimes_k F$ are linearly independant over k.
 c) Prove that if $F \subseteq F'$ are fields then the inclusion $F \hookrightarrow F'$ induces a monomorphism $E \otimes_k F \hookrightarrow E \otimes_k F'$, so that it is reasonable to think of $E \otimes_k F$ as a k-subalgebra of $E \otimes_k F'$.
 d) If E and F are both contained in an extension field K of k, prove that E and F are linearly disjoint over k [Lang, §X.5, p. 379] [Hungerford, §VI.2, p. 318] \(\iff E \otimes_k F \text{ is a field, and in this case } E \otimes_k F \approx EF.\)