Definition. A family \(\mathcal{F} \) of subsets of a set \(X \) is called a **filter** on \(X \) if it satisfies the following three conditions:

1. \(\emptyset \notin \mathcal{F} \).
2. \(F_1, F_2 \in \mathcal{F} \Rightarrow F_1 \cap F_2 \in \mathcal{F} \).
3. \(F_1 \in \mathcal{F} \) and \(F_1 \subseteq F \subseteq X \Rightarrow F \in \mathcal{F} \).

A filter \(\mathcal{F} \) which is maximal with these properties is called an **ultrafilter**. An ultrafilter \(\mathcal{F} \) is called **principal** if \(\bigcap \mathcal{F} \neq \emptyset \). (In this case, \(\bigcap \mathcal{F} = \{x\} \) for some \(x \in X \) and \(\mathcal{F} = \{F \subseteq X \mid x \in F\} \).)

Lemma. A filter \(\mathcal{F} \) is an ultrafilter if and only if for all \(F \subseteq X \), either \(F \in \mathcal{F} \) or \(X \setminus F \in \mathcal{F} \).

1. Let \(K \) be a field and \(X \) an infinite set.
 a) Complete the proof given in class showing that there is a one-to-one correspondence between the ideals in \(\prod_X K \) and the filters on \(X \), and that prime ideals correspond to ultrafilters.
 b) Characterize those primes corresponding to principal ultrafilters.
 c) Show that all prime ideals in \(\prod_X K \) are maximal.

2. Prove that the following conditions are equivalent for a commutative ring \(R \):
 (1) \(R \) has no non-trivial nilpotent elements and every prime ideal in \(R \) is maximal.
 (2) For every prime ideal \(p \) of \(R \), \(R_p \) is a field.
 (3) For every \(r \in R \) there exists \(x \in R \) with \(r^2x = r \).
 (4) Every finitely generated ideal in \(R \) is generated by an idempotent.

 (Hint: This problem uses several different pieces of the theory we’ve developed.)

3. Prove that if \(p \) is an ideal with height 0 in a commutative (not necessarily noetherian) ring \(R \), then \(p \) consists of zero divisors.

4. Suppose that \(p_0 \) and \(p \) are prime ideals in \(\mathbb{Z}[X] \) such that \(0 \not\subseteq p_0 \not\subseteq p \).
 a) Identify \(\mathbb{Z} \) as a subring of \(\mathbb{Z}[X] \) in the obvious way. Prove that \(p \cap \mathbb{Z} \neq 0 \).
 b) Prove that there exists a prime number \(p \in \mathbb{Z} \) such that \(p \in p \).
 c) Prove that \(p \) is a maximal ideal.