MAXIMAL MATCHINGS

Given a set of \(n \) men and \(m \) women such that certain pairs of a man and women are acceptable partners. We say that such a pair is **compatible**.

Now, without assuming the Marriage Condition, we will determine the maximal number of compatible pairs that can be matched.

For each man \(x_i \), let \(A_i \) be the set of women who are compatible with \(x_i \).

Choose a maximal matching \(M \), i.e. no possible matching contains more compatible pairs than \(M \). Let \(\rho \) be the number of pairs matched under \(M \).

Lemma. For every set \(i_1, \ldots, i_k \) of integers between 1 and \(n \),

\[
\rho \leq |A_{i_1} \cup \cdots \cup A_{i_k}| + n - k.
\]

Proof: There can be at most \(|A_{i_1} \cup \cdots \cup A_{i_k}| \) matchings in \(M \) involving the men \(x_{i_1}, \ldots, x_{i_k} \), since that’s all the women available for them. On the other hand, there can be at most \(n - k \) additional matchings, since that’s all the men that are left. Since there are \(\rho \) men matched under \(M \), it follows that \(\rho \leq |A_{i_1} \cup \cdots \cup A_{i_k}| + n - k \). \(\square \)

Use the procedure in the proof of the Marriage Theorem to assign a star to either the man or the woman in each matched couple in such a way that every compatible pair (whether matched or not) contains at least one starred person.

Lemma. Let \(\{x_{i_1}, \ldots, x_{i_k}\} \) be the set of unstarred men. Then \(\rho = |A_{i_1} \cup \cdots \cup A_{i_k}| + n - k \).

Proof: Since \(\{x_{i_1}, \ldots, x_{i_k}\} \) are unstarred, all the compatible partners for \(\{x_{i_1}, \ldots, x_{i_k}\} \) must be starred, i.e. all the women in \(A_{i_1} \cup \cdots \cup A_{i_k} \) must be starred (otherwise there would be a compatible pair with neither partner starred). Furthermore, there are \(n - k \) starred men. But there is one star for each matched pair, so \(\rho \) is the total number of stars. Thus \(\rho \geq |A_{i_1} \cup \cdots \cup A_{i_k}| + n - k \). By the preceding lemma, we know that \(\rho \leq |A_{i_1} \cup \cdots \cup A_{i_k}| + n - k \). Thus \(\rho = |A_{i_1} \cup \cdots \cup A_{i_k}| + n - k \). \(\square \)

To summarize, we have
Theorem. The maximum possible number of men that can be matched under any matching is the smallest value taken by $|A_{i_1} \cup \cdots \cup A_{i_k}| + n - k$ over all sets $\{i_1, \ldots, i_k\}$ of integers between 1 and n.

Proof: The maximum number of men that can be matched under any matching is ρ. We have seen that for all sets $\{i_1, \ldots, i_k\}$, $\rho \leq |A_{i_1} \cup \cdots \cup A_{i_k}| + n - k$ and that there exists at least one such set (corresponding to the set of unstarred men in the preceding lemma) such that $\rho = |A_{i_1} \cup \cdots \cup A_{i_k}| + n - k$. \Box