(15) **1. a)** State Wilson’s Theorem.
 b) Illustrate the idea of the proof of Wilson’s Theorem by using the example $p = 13$.

(20) **2. a)** Find the smallest integer n such that $n \geq 8$ and $n \equiv 7 \pmod{4}$,
 $n \equiv 7 \pmod{5}$, and $n \equiv 7 \pmod{13}$.
 b) Given that $12x \equiv 1 \pmod{59}$ has $x = 5$ as a solution, solve each of the following:
 i) $12x \equiv 8 \pmod{59}$
 ii) $12x \equiv 13 \pmod{59}$
 iii) $12x \equiv 35 \pmod{59}$.

(15) **3.** Let a and b be positive integers. Prove that there exist x and y with $a = (x, y)$,
 $b = [x, y]$ if and only if $a|b$.

(25) **4. a)** Prove that the Diophantine equation $ax + by = c$ has a solution if and only if
 the congruence $ax \equiv c \pmod{b}$ has a solution.
 b) Let $g = (a, b)$. By Theorem 1.4, $ax + by = g$ has a solution.
 Use this to prove that $ax + by = c$ has a solution if and only if $g|c$.
 (DO NOT use theorems about congruences.)

(25) **5. a)** Prove that for any n, $n^9 - n$ is divisible by 10.
 b) Prove that $n^9 - n$ is divisible by 20 if and only if n does not have the form $4k + 2$.