PLEASE RETURN TEST SHEET

Do any seven problems.

1. Prove that a positive integer n is prime if and only if $\varphi(n) = n - 1$.

2. Prove that there do not exist integers x and y such that $x^2 + y^2 \equiv 3 \pmod{4}$.

3. Prove that a positive integer m is even if and only if $\varphi(2m) = 2\varphi(m)$.

4. Find the continued fraction expansions for the following real numbers:
 a) $\sqrt{20}$
 b) $\frac{42}{29}$

5. Prove that if n is any natural number and s is the sum of the digits of n, then n and s give the same remainder when divided by 9.
 (In other words, if a_k, \ldots, a_0 are the digits when n is written in its normal decimal representation and if $n = 9q + r$ with $0 \leq r < 9$, then $a_k + \cdots + a_0 = 9q_2 + r$ for some q_2.)

6. Let a be an integer and p a prime. Prove that if $x^2 - x + a$ is not a multiple of p for all integers x with $0 \leq x < p$ then $x^2 - x + a$ is not a multiple of p for any x whatsoever.
7. We know that if \(d = (a, b) \) then there exist integers \(x \) and \(y \) such that \(ax + by = d \). Use this to prove that the linear Diophantine equation \(ax + by = c \) has a solution if and only if \((a, b) \mid c \).

8. Prove that the simple continued fraction expansion for \(\sqrt{a^2 - 1} \) (where \(a \geq 2 \)) is \([a - 1; 1, 2a - 2] \).

9. Let \(p \) be a prime number of the form \(4k + 1 \) and let \(q \) be any prime number except 2. Prove that \(p \mid x^2 - q \) for some \(x \) if and only if \(q \mid y^2 - p \) for some \(y \).

10. a) Prove that for any \(x \), every prime factor of \(x^2 + 1 \) (except 2) has the form \(4k + 1 \). In particular, if \(p_1, \ldots, p_n \) are prime numbers, then the odd prime factors of \(p_1^2 \cdots p_n^2 + 1 \) must have the form \(4k + 1 \).

b) Use this to prove that there are infinitely many primes of the form \(4k + 1 \).