The role of an if/then statement in a proof is very different depending on whether it occurs in the hypothesis or the conclusion.

If the statement “If P then Q” is what has to be proved, then P gets added the hypothesis of the theorem (by using the word “Suppose”), and the goal of the proof is to prove Q.

If the statement “If P then Q” is part of what’s given, this tells us that if we want to prove Q, it will be sufficient to prove P. Therefore instead of directing our efforts to proving Q, we can concentrate on proving P.

Problem. Let A is an $m \times n$ matrix and let v_1, \ldots, v_p be vectors in \mathbb{R}^n. Prove that if the vectors Av_1, \ldots, Av_p in \mathbb{R}^m are linearly independent, then the vectors v_1, \ldots, v_p are linearly independent.

Given:
- Av_1, \ldots, Av_p are linearly independent.

To be proved:
- v_1, \ldots, v_p are linearly independent.

Now $a_1v_1 + \cdots + a_pv_p = 0$ gets added to the list of what’s given by using the word “suppose.” And to succeed in proving $a_1 = \cdots = a_p = 0$ it is good enough to prove that $a_1Av_1 + \cdots + a_pAv_p = 0$, so that becomes the new goal.

Revised given:
- Av_1, \ldots, Av_p are linearly independent.
- Suppose $a_1v_1 + \cdots + a_pv_p = 0$.

Desired end of proof:
- Thus $a_1Av_1 + \cdots + a_pAv_p = 0$.
- Therefore $a_1 = \cdots = a_p = 0$ because Av_1, \ldots, Av_p are linearly independent.

It is now obvious how to complete the proof.

Proof: Suppose that Av_1, \ldots, Av_p are linearly independent. And suppose that $a_1v_1 + \cdots + a_pv_p = 0$. Multiplying both sides by A and invoking the distributive law yields $a_1Av_1 + \cdots + a_pAv_p = 0$. Therefore $a_1 = \cdots = a_p = 0$ because Av_1, \ldots, Av_p are linearly independent.

We have shown that if $a_1v_1 + \cdots + a_pv_p = 0$ then a_1, \ldots, a_p must all be 0. This shows that v_1, \ldots, v_p are linearly independent.