Some Ramsey Theory in Nonstandard Analysis

David A. Ross
Department of Mathematics
University of Hawaii
Honolulu, HI 96822

ross@math.hawaii.edu
www.math.hawaii.edu/~ross
www.infinitesimals.org

1 December 2000

Outline of talk:

1. How does an ‘applied’ nonstandard analyst get sucked into the world of infinitary combinatorics?

2. Reflections on the use of NSA in infinitary combinatorics. (In particular: sketches of nonst’d proofs of results of Rowbottom et al.)
Motivation and History

- Common equation:

\[\text{Combinatorics} + \text{NSA} = (\text{standard}) \text{ mathematical results} \]
- usually finitary combinatorics

- Some appearances of infinitary combinatorics within NSA:

(I) Advantages to building the nonstandard model using special ultrafilters:

- (Cutland, Kessler, Kopp, R. 1988) TFAE:
 1. \(\forall x \in \mathbb{R}^N/D, \text{ if } x \approx 0 \text{ then } x = ^*s_M \text{ for some standard sequence } s_n \text{ converging to 0 and some infinite } M; \)
 2. \(D \) is a P-point
• (II) Infinitary combinatorics + NSA = (standard) mathematical results:

 – (Benedikt) Recent work on database query languages (W/Keisler, Libkin, et al.) (Ramsey theory, Vapnik-Chervonenkis Dimension)

• (III) Use of NSA to prove Ramsey-like results:

 – (Keisler, Kunen, Miller, Leth 1989) Let \(\Omega \) internal; then any \(F : \mathcal{P}_n(\Omega) \to \mathbb{N} \) with a countably determined graph has an infinite internal homogeneous subset.

Nonst’d proofs of results of Rowbottom et al.

Fix κ a cardinal number $\geq \omega$

Theorem. If κ is measurable then $(\kappa)^n_m$. In other words, if $F : \mathcal{P}_n(\kappa) \rightarrow m$, then there is an $X \subseteq \kappa$ such that $\text{card}(X) = \kappa$ and X is homogenous for F. ($n \in \mathbb{Z}^+, m < \kappa$). Moreover, if μ is normal on κ then we may take $\mu(X) = 1$.

Definition. A measure μ on κ is *normal* provided that for any $f \in {}^\kappa\kappa$, if $\mu\{\alpha < \kappa \mid f(\alpha) < \alpha\} = 1$ then for some $\alpha_0 \in \kappa$, $\mu(f^{-1}\{\alpha_0\}) = 1$.

Theorem. If κ is an uncountable measurable cardinal then κ is measurable with respect to a normal measure.

Corollary. (Erdös-Hajnal) Assume κ measurable, $\delta < \kappa$, $\forall \alpha < \delta, n_\alpha \in \mathbb{N}^+$, $m_\alpha < \kappa$, and $F_\alpha : \mathcal{P}_{n_\alpha}(\kappa) \rightarrow m_\alpha$. Then there is an $X \subseteq \kappa$ such that $\text{card}(X) = \kappa$ and X is homogenous for F_α (same X works for all α).
If $H \in ^*\kappa$, define $\mu_H : \mathcal{P}(\kappa) \rightarrow 2$ by:

$$
\mu_H A = \begin{cases}
1, & H \in ^*A \\
0, & \text{otherwise},
\end{cases}
$$

and say that H represents μ_H

Proposition. (Nonst’d representation of measures.) If $\mu : \mathcal{P}(\kappa) \rightarrow 2$ is a finitely additive measure then for some $H \in ^*\kappa$, $\mu = \mu_H$.

Proposition. (Nonst’d representation of normality.) The following are equivalent:

1. μ_H is normal
2. for any $f \in ^\kappa\kappa$, if $^*f(H) < H$ then $^*f(H) \in \kappa$.

(In this case, call H normal.)

Proposition. (Nonst’d representation of α-additivity) The following are equivalent:

1. μ_H α–additive
2. $\forall \{A_i\}_{i<\alpha} \subseteq \mathcal{P}(\kappa), \ H \in (\bigcap_{i<\alpha}^* A_i) \Rightarrow H \in ^*(\bigcap_{i<\alpha} A_i)$.

Corollary. If μ_H is α-additive and $f \in ^\kappa\kappa$, then $\mu_{f(H)}$ is α-additive.
Theorem. If $H \in {}^{*}\kappa \setminus \kappa$ and μ_H is α–additive, $\alpha \geq \omega$, then for some normal $H_0 \in {}^{*}\kappa \setminus \kappa$, μ_{H_0} is α–additive.

Proof sketch:

Corollary. If κ is an uncountable measurable cardinal then κ is measurable with respect to a normal measure.
Proof of Rowbottom result:

(Remark. It suffices to assume \(m \) finite, \(n = 2 \)).

Let \(\mu = \mu_H \) be a measure on \(\kappa \). Put \(C_j = \{ x \in \kappa \mid *F(x, H) = j \} \), \(j < m \). Since \(\kappa = C_0 \cup \cdots \cup C_{m-1}, H \in *C_j \) for some \(j \).

Define \(\bigcup_{\alpha} \subseteq \kappa \) inductively, \(\alpha < \kappa \), so that:

(a) \(H \in *\bigcup_{\alpha} \)
(b) \(\{ x_{\alpha} \}_{\alpha < \kappa} \) is increasing, where \(x_{\alpha} = \inf \bigcup_{\alpha} \)
(c) \(F(x_{\beta}, x) = j \) whenever \(x \in \bigcup_{\alpha}, \alpha > \beta \)

Here’s how:

1. \(\bigcup_0 := C_j \).
2. \(\alpha \) a limit: \(\bigcup_{\alpha} := \bigcap_{\beta < \alpha} \bigcup_{\beta} \).
3. \(\alpha = \beta + 1 \): \(\bigcup_{\alpha} := \{ x \in \bigcup_{\beta} \setminus \{ x_{\beta} \} \mid F(x_{\beta}, x) = j \} \)
 (Note \(x_{\beta} \in \bigcup_{\beta} \subseteq C_j \), so \(*F(x_{\beta}, H) = j \), so \(H \in *\bigcup_{\alpha} \).

Put \(X = \{ x_{\alpha} \}_{\alpha < \kappa} \). (c) guarantees that \(F(x, y) = j \) whenever \(x \neq y \in X \), i.e. \(X \) is homogeneous for \(F \).

Suppose now that \(\mu \) is normal but \(\mu X = 0 \). Note that for any \(x \in \bigcup_0 \) there is a greatest \(\beta = \beta(x) < \kappa \) with \(x \in \bigcup_{\beta} \).
(Otherwise, take \(\alpha \) least with \(x \not\in \bigcup_{\alpha} \), then \(\alpha \) is a limit and \(x \in \bigcap_{\beta < \alpha} \bigcup_{\beta} \), a contradiction.) Put \(\varphi(x) = x_{\beta(x)} \), note \(\varphi(x) < x \) for \(x \in \bigcup_0 \setminus X \), so \(*\varphi(H) = \alpha_0 = x_{\beta_0} \) for some \(\alpha_0, \beta_0 \in \kappa \); then \(H \not\in *\bigcup_{\beta_0 + 1} \), a contradiction.
Question: Suppose $f : (\Omega, \mathcal{A}_L, P_L) \rightarrow Y$ is Loeb measurable, Y a metric space; does f have a lifting?

Suffices: (*) If \mathcal{E} partitions Ω into Loeb nullsets, then for some $\mathcal{E}' \subseteq \mathcal{E}$, $\bigcup \mathcal{E}'$ is not Loeb measurable.

Remark: Follows easily if Loeb measure is compact; this can depend on underlying set theory (Jin, Shelah).

Theorem. (R., 1996) Suppose (i) $\kappa = \text{card}(\mathcal{A})$; (ii) For some nondecreasing sequence $\{\mathcal{A}_i\}_{i<\kappa}$ with each $\mathcal{A}_i \subseteq \mathcal{A}$ compact, $\mathcal{A} = \bigcup_{i<\kappa} \mathcal{A}_i$; and (iii) No $\alpha < \kappa$ is both measurable and cofinal in κ. Then (*) holds.

Proof start:

Else let $\mathcal{E} = \{E_i\}_{i<\alpha}$ be a counterexample with α least.

Induces a (σ-additive) measure on $(\alpha, \mathcal{P}(\alpha))$.

Ulam dichotomy:

(1) Atomless: RVMC, diagonalize using a Bernstein set.

(2) An atom: then WOLG α is a measurable cardinal, use Erdős-Hajnal in a clever way.

Question: Can (i)–(iii) in the theorem statement be replaced with (eg) the Isomorphism Property (Henson, Jin, Shelah) or some version of the Generic Filter Property (Di Nasso, Hrbacek)?