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Abstract Universal meshes have recently appeared in the literature as a compu-
tationally efficient and robust paradigm for the generation of conforming simpli-
cial meshes for domains with evolving boundaries. The main idea behind a univer-
sal mesh is to immerse the moving boundary in a background mesh (the universal
mesh), and to produce a mesh that conforms to the moving boundary at any given
time by adjusting a few of elements of the background mesh. In this manuscript we
present the application of universal meshes to the simulation of brittle fracturing.
To this extent, we provide a high level description of a crack propagation algorithm
and showcase its capabilities. Alongside universal meshes for the simulation of brit-
tle fracture, we provide other examples for which universal meshes prove to be a
powerful tool, namely fluid flow past moving obstacles. Lastly, we conclude the
manuscript with some remarks on the current state of universal meshes and future
directions.

Dedicated to Michael Ortiz on the occasion of his 60th birthday.

1 Introduction

Predicting and understanding the behavior of a propagating fracture has applications
in a broad spectrum of disciplines. Perhaps the most renowned are applications in
civil, mechanical, and aerospace engineering for the safe design of structural and
mechanical components. More recently, a new wave of interest in understanding
fracture propagation has risen due to the insurgence of hydraulic fracturing for the
recovery of shale gas, as well as for engineering geothermal reservoirs. Alongside
hydraulic fracturing, the practice of abyssal sequestration [1] for the disposal of
radioactive waste also necessitates numerical tools capable of predicting the behav-
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ior of fluid driven fractures. Beyond engineering, the modeling of fracturing finds
relevance in geophysics, for example for the prediction of ice-sheet separation and
its effect on global climate. Due to the pervasive nature of fracture mechanics in
many disciplines, there is a need for a deeper understanding of fracture evolution
accounting for the three-dimensionality of the fracturing process. These applica-
tions motivate the current efforts towards the creation of robust and computationally
efficient numerical methods to approximate the solutions of such fracture evolution
models. discuss, but is intended to shine some light on the pervasive nature of frac-
ture mechanics amongst many disciplines. It is therefore apparent that there exists a
need amongst many communities for robust and computationally efficient numerical
methods for the prediction of fracture propagation.

From the numerical standpoint, one of the crucial challenges faced in this partic-
ular class of problems is the approximation of the evolving displacement disconti-
nuity, which is the focus of the work presented here. Several approaches have been
proposed in the literature to address this challenge. Albeit a comprehensive literature
review is beyond the scope of this manuscript, a very broad classification of the pre-
dominant classes of methods capable of handling the evolution of a few cracks can
be arguably categorized into basis-enriching methods or mesh-conforming methods.
Additionally it is worthwhile mentioning numerical methods to approximate solu-
tions of regularized theories of fracture. These theories, by assigning a finite width
to the fracture, circumvent the need to explicitly track the crack geometry. Some
examples are phase field methods [2], and Michael Ortiz’s own contributions on
eigenfracture [3] and eigenerosion [4, 5], to name a few. Also worth mentioning are
methods for situations in which massive fragmentation appears, such as the seminal
contributions by Michael Ortiz based on cohesive elements [6, 7, 8, 9, 10].

Basis-enriching methods, such as the Extended (XFEM) [11, 12] and General-
ized (GFEM) [13, 14] finite element methods, endow the finite dimensional sub-
space with discontinuous functions. These methods circumvent the need to accom-
modate the evolving displacement discontinuity in the domain subdivision by im-
plicitly representing it through the discontinuous basis functions. Numerical integra-
tion can be rather challenging, and, for problems such as hydraulic fracturing, when
coupled governing equations need to be solved on the crack faces, these methods
fail to provide a quality subdivision of the crack geometry. An example of the latter
is illustrated in Fig. 1.

Alternatively, conforming methods envision generating a subdivision which ac-
commodates exactly the evolving crack geometry. By ensuring that the mesh for the
domain always conforms to the crack path, any displacement discontinuity along
the crack is easily introduced. While the idea is simple it is nonetheless powerful.
The robustness of this class of methods is limited by the generation of a quality
conforming subdivision, a process which can be computationally demanding and
prone to failure. Some examples of this approach are locally re-meshing methods as
encountered in [15, 16, 17] as well as r-adaptive procedures as proposed in [18, 19,
20, 21]. Related to the latter are finite element spaces with embedded discontinuities
[22, 23].
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Fig. 1: An arbitrary cut (in red) through a quality tetrahedralization, representing an
imaginary fracture, yields a poor discretization of the fracture faces.

Herein we present a few ideas for the simulation of brittle fracture that fall in
the latter category of conforming mesh methods by taking advantage of universal
meshes. Universal meshes is a paradigm for mesh generation that envisions the use
of a single “background” mesh (the universal mesh) whose vertices closest to the
crack geometry are perturbed to obtain a subdivision conforming to it. An exam-
ple of such a perturbation is illustrated in Fig. 2. Because the same mesh can be
deformed to conform to the geometry of a class of cracks, we say that the mesh
is universal for such a class. The salient features of the method are its robustness,
computational efficiency, and the mesh-independence of the solutions it provides (in
fact, convergence).

We provide a description of the algorithm of universal meshes in § 2 followed by
the presentation of the algorithm for the simulation of brittle fracture in § 3. Later,
in § 4, we highlight some applications of universal meshes beyond brittle fracture.
We conclude the manuscript on some recent developments of universal meshes in
three dimensions in § 5.

2 Universal Meshes

We introduce the basic algorithmic ideas behind a universal mesh next. For con-
creteness, we focus the description on the aspects relevant to crack propagation,
bearing in mind that similar ideas apply equally well to other classes of evolving
domains, such as those encountered in fluid-structure interaction, as discussed later
in § 4.
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2.1 Algorithm

To illustrate the discretization of an evolving domain with a universal mesh, we
consider in this section the problem of triangulating a domain Ω(t)⊂R2, 0≤ t ≤ T ,
which contains an evolving crack. In other words,

Ω(t) = D \Γ (t)

where D ⊂ R2 is an open, bounded, polygonal domain and Γ (t) ⊂ D is a simple
open rectifiable curve.

Let Th be a triangulation of D , hereafter referred to as the universal mesh. We
use h to denote the maximum diameter of an element of Th. We do not assume that
the universal mesh conforms to Γ (t) at any given time; in general, Γ (t) may cut
through elements of Th arbitrarily, as in Fig. 2. Intuition would suggest, however,
that a conforming mesh can be constructed by adjusting a few elements of Th in a
neighborhood of Γ (t). This is the basic observation behind universal meshes.

To construct such a conforming mesh from Th, the following algorithm is
adopted. First, a subset of edges in Th lying near Γ (t) is identified. We denote
the union of these edges Γh(t). Next, these edges are mapped onto Γ (t) via the clos-
est point projection π : R2 → Γ (t), with a suitable modification that places nodes
precisely at the crack tips. Finally, the positions of nearby nodes are adjusted via a
relaxation step that ensures the quality of the resulting triangulation.

The precise choices for the edges constituting Γh(t) and the nodal adjustments
adopted during relaxation are detailed in [24]. Briefly, Γh(t) consists of positive
edges of positively cut triangles in Th. To define these notions, one designates an
orientation (positive or negative) for points in a neighborhood of Γ (t). A triangle
in Th is called positively cut if it has two nodes on the positive side of Γ (t) and
one on the negative side. An edge is then called a positive edge if it belongs to
a positively cut triangle and its endpoints both lie on the positive side of Γ (t). A
minor modification to Γh(t) is made if a triangle in Th has three nodes on Γh(t);
see [24] for details.

A key feature of the algorithm summarized above is its robustness. That is, the
algorithm returns a valid mesh, for both the crack and the domain, with the quality
of the elements bounded from below independently of the mesh size. To guarantee
the above, three mild conditions need to be satisfied: (1) the background mesh is
sufficiently refined in a neighborhood of Γ (t), (2) all positively cut triangles in Th
are acute, and (3) the curve Γ (t) is sufficiently smooth. This statement was proved
for a domain with C2 boundary (no cracks) in [25, 26]. The numerical examples
strongly suggest that this should also be possible for domains with interfaces, such
as cracks.
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Γh

Th

Γ UM

Fig. 2: Using a universal mesh, a triangulation conforming to a crack (right) is con-
structed by immersing the crack in a background triangulation Th (left) and adjust-
ing a few of its elements. This is accomplished by selecting a set of edges Γh in the
background triangulation that lie near the crack Γ , mapping them onto Γ via the
closest point projection, and relaxing a few nearby vertices to ensure the quality of
the resulting triangulation.

3 Simulating Brittle Fracture with Universal Meshes

The obvious way in which a universal mesh is useful for the simulation of a propa-
gating crack is by providing a mesh perfectly conforming to the crack at each step
of its evolution. However, there are advantages that are less evident: the conforming
mesh enables us to compute stress intensity factors to any order of accuracy, and
the few mesh changes from step to step make it possible to retain much of the data
structures in the computer implementation. The accuracy in the computation of the
stress intensity factors is a determinant factor in observing convergence of the crack
evolutions for “reasonable” mesh sizes.

In the following we present a numerical algorithm for the simulation of crack
evolution in a restricted set of problems, as introduced in [24]. The presentation of
the algorithm is followed by examples, including the formation of oscillatory crack
paths in quenched plates, which requires very accurate stress intensity factors to
converge.

3.1 Problem Statement

We consider the problem of an always propagating crack in an elastic medium, as
defined next. We parametrize the crack evolution by the crack length ` ∈ [`0, `max]
and we denote by C (`) the crack tip position for the crack of length `. Hence the
crack set is given by C ([`0, `]). The domain occupied by the cracked domain is
denoted by Ω(`) and its boundary is decomposed into a portion over which dis-
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placements are prescribed, ∂dΩ(`), and a portion over which boundary tractions are
prescribed, ∂τ Ω(`). Further we let C ([`0, `])⊆ ∂τ Ω(`).

The problem statement then reads: find the deformation u(·, `) : Ω(`)→ R2, the
load scaling factor C : [`0, `max]→ R, and the crack set C ([`0, `max]) such that the
following holds for all ` ∈ (`0, `max]:

−∇ · (C : ∇u) = b, on Ω(`),

(C : ∇u)n = t, on ∂τ Ω(`),

u = g, on ∂dΩ(`),

KI [u] = Kc,

KII [u] = 0,

C ([`0, `
−])⊂ C ([`0, `]), ∀`− < `,

where b(`) =C(`)b(`), t(`) =C(`)t(`), g(`) =C(`)g(`). Here b(·, `) : Ω(`)→ R2,
t(·, `) : ∂τ Ω(`)→R2, and g(·, `) : ∂dΩ(`)→R2 are arbitrary functions representing
the “shape” of the body forces and boundary conditions. Effectively, for every crack
length we know the “shape” of the applied body force (b), boundary tractions (t)
and displacements (g), and we must solve for the linearly scaling coefficient C(`)
such that the condition KI [u] = Kc is always met, where KI,II [u] are the mode I and
II stress intensity factors. The condition KII [u] = 0 dictates the direction of crack
propagation following the Principle of Local Symmetry [27].

The “always propagative crack” problem circumvents some of the more delicate
issues in crack propagation, such as crack arrest and catastrophic crack propagation,
regularity of the crack path, and competition among multiple cracks. The algorithm
introduced next is applicable to this simpler class of problems.

3.2 Crack propagation algorithm

There are three critical steps in the computation of the evolution of brittle crack
paths: (1) the generation of a triangulation that conforms to the cracked domain, (2)
the calculation of the elasticity fields, and (3) the evaluation of the stress intensity
factors for curvilinear cracks. The steps are highlighted in Fig. 3.

We construct a triangulation that conforms to each cracked domains from a uni-
versal mesh, as described in §2. To ensure that the elasticity fields are sufficiently
resolved, we draw on a class of finite element methods for domains with corners
or cracks that retain optimal convergence rate for elements of any order in the face
of singular solutions [28], in contrast to standard methods or methods with enrich-
ments. Lastly, given that we compute with higher order solutions of the elasticity
fields, we employ a family of interaction integrals specifically designed to handle
curvilinear cracks [29] which yield stress intensity factors that converge rapidly to
the exact ones (namely, they converge with twice the rate of convergence of the
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derivatives of the solution of the elasticity fields; a motivation to the use higher-
order finite element methods).

We approximate the crack set C ([`0, `]) by a cubic spline interpolant Γ h
` of a

finite set of crack tips A` = {xn}(`−`0)/∆`
n=0 , where `0 is the initial crack length and

∆` > 0 is a crack discretization parameter. For a discrete crack Γ h
` , ` indicates the

chord length (the length along the polygonal line formed by points in A`, plus the
initial crack length `0) instead of its length. At any value of ` ≥ `0, the algorithm
proceeds through the following three steps:

1. Generate a conforming triangulation to the crack Γ h
` .

2. Find uh(`)≈ u(`) and Ch(`)≈C(`).
3. Advance the crack in the direction d(Kh

II [u
h]/Kh

I [u
h]) by ∆` ( namely A`+∆` =

A`∪{x(`−`0)/∆`+d(Kh
II [u

h]/Kh
I [u

h])∆`} ).

g(`)

∂τ Ω(`)

r

Ω(`)

∂τ Ω(`)

Ω(`)

C (`)

‖σ(u)‖ ∼ 1√
r

∂τ Ω(`)

∂d Ω

∂d Ω

Ω(`)

Advance the crack in the

direction d(Kh
II [u

h]/Kh
I [u

h]) by ∆`.

t(`)
t(`)

∂d Ω

t(`)t(`)

Find uh ≈ u,

C (`0)
Create a conforming triangulation

from the universal mesh

g(`)g(`)

g(`)

Ch(`) s.t. Kh
I [u

h] = Kc

d(KII/KI)∆`Γ h
`

Γ h
`

∂d Ω

Γ h
`

Ω(`)

Γ h
`

Fig. 3: The critical steps in the crack advancement algorithm.

Here the direction d : R→ S1 is chosen such that an infinitesimally short kink
at the chosen angle satisfies the Principle of Local Symmetry (KII = 0) up to first
order in the kink angle itself. Evaluating d in this way sidesteps the potentially
computationally intensive alternative of explicitly solving for the direction d, but it
likely restricts the order of convergence of the algorithm.
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3.3 Examples

We next showcase the application of the algorithm for the simulation of brittle frac-
ture to two examples. The first example is a crack propagating along a circular arc,
which we compare against an exact solution, and the second is a crack propagat-
ing in a perforated plate undergoing three-point bending, which we compare against
experimental results. We also show (preliminary) results on the application of a
slight modification of this algorithm to the computation of crack paths in a rapidly
quenched plate [30].

3.3.1 A crack propagating along a circular arc

The displacement and stress fields of an infinite medium that contains a crack shaped
as a circular arc subjected to far-field stresses and traction-free faces was computed
in [31]. The corresponding stress intensity factors can be found in [32]. We use this
solution to construct a loading history that, when is applied as Dirichlet boundary
conditions to a square-shaped domain, as illustrated in Fig. 4a, causes the crack to
propagate along a circular arc. For details on the construction of such a loading
history we refer the interested reader to [24].

Fig. 4a shows a square-shaped domain Ω with a pre-existing crack of radius
R = 2 and angular span ϑ0 = π/8.The analyses were carried out with four pro-
gressively refined universal meshes. The coarsest background mesh as well as the
conformed mesh are shown in Fig. 5, and their refinements were constructed by
recursively subdividing each triangle of the background mesh into four similar
ones. The ratio ∆`/h ≈ 2 was kept constant over all simulations, where as usual
h denotes the maximum diameter of an element in a triangulation. As shown in
Fig. 4b, the crack path converges to a circular arc, and the convergence curves for
the Lp([`0, `max]), p = 2,∞ and H1([`0, `max]) norms are shown in Fig. 4c. Notably,
convergence of the tangents to the crack path is also obtained.

This simple, nonetheless illustrative example, suggests that the algorithm is in-
deed convergent, and hence that the computed paths are largely independent of the
chosen mesh.

3.3.2 Perforated plate

We next present the problem of a perforated plate undergoing three-point-bending.
The problem setup is illustrated in Fig. 6a. We performed the simulations for three
configurations of the initial crack position (d) and length (`0). The values are tab-
ulated in Fig. 6a. In Fig 6b we illustrate a universal mesh employed for one of the
three simulations. It is worthwhile to note the adaptive nature of the background
triangulation; in fact universal meshes can be easily adopted in conjunction with
adaptive refinement. For each of the three simulations we generated a slightly dif-
ferent universal mesh to comply with the varying location of the initial crack.
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u(`) = g(`)
2

1
1

4

Initial Crack

π/8 = ϑ(0)

Ωx

y

(a) Modeled problem

∆`0/∆`= h0/h = 4
∆`0/∆`= h0/h = 3
∆`0/∆`= h0/h = 2
∆`0/∆`= h0/h = 1

Analytical

∆`0/∆`= h0/h = 4
∆`0/∆`= h0/h = 3
∆`0/∆`= h0/h = 2
∆`0/∆`= h0/h = 1

Analytical
(b) Convergence of the solution

10−110010−2

10−1

h/h0

‖Γ
h ` m

ax
−

C
‖ W

k,
p
([
` 0
,`

m
ax
])

k = 0; p = 2(L2)

k = 0; p = ∞(L∞)

k = 1; p = 2(H1)

O(h1)

(c) Convergence of the crack path

Fig. 4: The circular arc crack problem.

Experimental results for this test setup are available in [33, 15]. The experiments
were performed on polymethyl methacrylate (PMMA) plates. A comparison of the
computed crack paths with digitized points from [33, 15] show a good agreement
with experimental results. Further, relative convergence studies were performed on
the computed crack paths, and the results, that can be found in [24], show a similar
behavior to the one observed in Fig. 4.
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universal meshes

Fig. 5: The universal mesh used for the entire simulation (left) and the conformed
triangulation at the end of the simulation with the background mesh in red (right).

3.3.3 Crack path instabilities in a quenched plate

Lastly we concisely present the problem of a thermally driven fracture in a quenched
plate. The problem consists of a plate of finite width cracked along its center line,
with low toughness (Kc), that, after being heated to temperature θ+, is immersed
in an ice bath at temperature θ− with a constant velocity (v). Refer to Fig. 8 to
supplement the above description.

Depending on the material parameters, the presence of small deviations from
the idealized descriptions above, and the configuration of the experiment, the crack
path is expected to develop oscillations. Fig. 9 showcases the results of experi-
ments performed by Yuse and Sano [34]. In Fig 10 we showcase some snapshots
of the computed crack path for one set of inputs. These were computed through a
modification to time-dependent problems of the algorithm introduced here. Details
will appear in [30].

Although not shown here, the crack paths are converged up to a small toler-
ance. In our experience, this problem benefitted immensely from the high-order
computation of the stress intensity factors; our previous attempts with low-order
methods required inordinately large meshes to begin displaying some form of mesh-
independent results. We hope to use this platform to better understand the underlying
physics.
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t(`)

d

Initial Crack

10

8

1

6

10

1

2

2

2.25

`0

TYP. 0.5

Test case d `0

A 6 2.5
B 6 1.0
C 5 1.5

(a) Modeled domain

(b) Universal mesh

Fig. 6: Geometry for a plate with holes and the universal mesh adopted.

4 Beyond Brittle Fracture: Moving Boundary Problems

In addition to crack propagation, a variety of problems in science and engineering
involve partial differential equations posed on domains that change with time. Such
problems, collectively referred to as moving-boundary problems, appear in stud-
ies of fluid-structure interaction, phase-transitions, free-surface flows, aeroelasticity,
and biolocomotion, to name a few. In this section, we demonstrate the applicability
of universal meshes to this broader class of problems.
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Simulation

Experiment

Simulation

Experiment

Simulation

Experiment

Simulation

Experiment

Fig. 7: Comparison between experimental results and computed crack paths. Exper-
imental results were digitized from [33, 15].

x

θ+ as x→ ∞

Crack

θ−
xCF

v

Fig. 8: Quenched plate problem setup.

4.1 Examples: Flow past moving obstacles

In the setting of fluid-structure interaction, universal meshes provide a conform-
ing discretization of the fluid domain at all times, allowing finite element spaces of
any desired order of accuracy to be used to spatially discretize the Navier-Stokes
equations. This conforming discretization can be made to deform smoothly over
time intervals that are short in comparison to the mesh spacing, thereby allowing
standard numerical integrators to be used to solve the resulting system of ordinary
differential equations. A projector (such as the nodal interpolation operator) is then
used to transfer information between finite element spaces each time nodal posi-
tions change discontinuously. Details of this procedure are given in [44, 45], and
rigorous theoretical bounds for a wide class of linear problems guarantee the high-
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Fig. 9: Representative results of experiments of wavy crack patterns in rapidly
quenched plates [34]. In both cases shown above, crack propagation along a straight
crack is unstable. These cases correspond to different immersion speeds.

Time

Fig. 10: Computed evolution of a thermally driven crack in a quenched plate. The
contours show the temperature profile along the crack with dark blue representing
θ− and dark red representing θ+

order nature of the resulting numerical scheme when high-order finite elements are
adopted [46, 47].

As an example, we consider in Fig. 11 the solution of incompressible, viscous
flow past a rotating propeller at Reynolds number Re = 290. We solved the problem
using a universal mesh having adaptive refinement in a neighborhood of the pro-
peller, together with Taylor-Hood finite elements. Figure 11 shows contours of the
vorticity at two instants in time. The robust nature of the method is patent in this
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example, as traditional deforming-mesh methods could easily encounter difficulties
with mesh entanglement upon rotation of the propeller.

As a second example, we consider in Fig. 11 the solution of incompressible,
viscous flow past a pair of NACA0015 airfoils that change their pitch sinusoidally
in time. We solved the problem using a universal mesh together with Taylor-Hood
finite elements. For simplicity, the tips of the airfoils were blunted so that the algo-
rithm described in Section 2 (which applies to smooth geometries) could be applied
in its most basic form. Figure 11 shows contours of the vorticity at two instants in
time corresponding to the maximum and minimum pitch (17◦ and −17◦, respec-
tively) of the airfoils.

Finally, we consider the solution of incompressible, viscous flow past an oscillat-
ing disk with unit diameter at Reynolds number Re = 185. We solved the problem
using a universal mesh having adaptive refinement near the disk (see Fig. 12a),
together with Taylor-Hood finite elements [44]. The disk’s motion was prescribed
using a sinusoidally varying vertical displacement with amplitude 0.2 and frequency
equal to 0.8 times the natural shedding frequency of a fixed disk of the same diam-
eter. Fig. 12b shows a snapshot of the contours of the vorticity. Fig. 12c shows the
observed convergence of the drag and lift coefficient time series under refinement
of the mesh, which were computed via direct integration over the boundary of the
disk.

5 Outlook

Clearly for a universal mesh to be useful in engineering practice, it needs to be able
to handle evolving geometries in three-dimensions. We show next some incipient
results in this direction.

5.1 Universal Meshes for Smooth Three-Dimensional Domains.

The construction of a universal mesh in three dimensions follows the steps described
in §2. Namely, given a smooth closed surface Γ ⊂ D ⊂ R3 immersed in a mesh of
tetrahedra Th, we first identify a set of faces Γh in Th that lie near Γ . These faces are
then mapped onto Γ via the closest point projection, and nearby nodes are adjusted
via a relaxation step that ensures the quality of the resulting mesh.

In analogy with the algorithm presented in §2, Γh is chosen as the union of posi-
tive faces of positively cut tetrahedra in Th. A tetrahedron in Th is called positively
cut if it has three nodes on the non-negative side of Γ and one on the negative side.
A face is then called a positive face if it belongs to a positively cut tetrahedron and
all three of its vertices lie on the non-negative side of Γ . The closest point pro-
jection defines a one-to-one mapping between a positive face and its image on Γ
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provided that the mesh size is small compared to the local radius of curvature, and
more importantly, provided some dihedral angles in the mesh are acute [48].

Some examples that illustrate the use of a universal mesh in three dimensions are
given in Figs. 13-14. In Fig. 13, two meshes of tetrahedra conforming to an elephant
undergoing changes in its posture were obtained from a single universal mesh. In
Fig. 14, the same procedure was used to construct conforming meshes of tetrahedra
of a human upper airway.

5.2 Universal Meshes for Evolving Curves on Surfaces

With an eye towards evolving crack fronts in three dimensions, we show next some
early results on how a universal mesh can conform to a smooth curve drawn over
a smooth surface, triangulating the interior of the curve over the surface, and con-
forming the tetrahedra to the surface and the mesh as well, see Fig. 15. To do so, a
planar parametrization of the surface was constructed, and a smooth approximation
of the given curve immersed in it. A conforming surface triangulation to the curve
was then achieved by using a modification of the algorithm in two dimensions, not
described here, and mapping the resulting planar triangulation back to the surface.
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(a) Flow past a rotating propeller.

(b) Flow past pitching airfoils

Fig. 11: Vorticity contours for two representative examples of flow past a moving
obstacle. The simulations consist of incompressible viscous flow, computed using a
universal mesh together with Taylor-Hood finite elements.
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(a) Background mesh

(b) Snapshot of the vorticity contours
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(c) Convergence of drag and lift coefficients

Fig. 12: Numerical simulation of incompressible, viscous flow past an oscillating
disk using a universal mesh. In (a), the background mesh adopted during the sim-
ulation is shown. In (b), a snapshot of vorticity contours are shown. In (c), the
convergence of the drag and lift coefficient time series under mesh refinement is
shown. The reported error E is the square root of the integrated squared error
(Ci(t)−C̄i(t))2, i = L,D, over the time interval [0,1], relative to a reference solution
C̄i(t) obtained from a fine mesh with h = 0.145. Nearly quadratic convergence is
observed. See [44] for details.
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Fig. 13: The top row shows the tetrahedral meshes conforming to the geometry of an
elephant in two different postures. They were obtained from the same background
universal mesh, discarding exterior elements. In the bottom row, two cuts of the
mesh displayed above and right are shown, together with the distribution of the
quality of the tetrahedra in the same mesh, on a logarithmic scale.
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Fig. 14: The two figures in the middle show conforming meshes for two different
configurations of a human upper airway. The figures on the far left and the far right
show a cut through each tetrahedral mesh. We used a CT scan of a patient as an
input for this example. The figure on the far left shows the contours of the velocity
field computed by solving the Navier-Stokes equations inside. Coupling this tool to
a solid mechanics analysis code for the upper airway would be useful to study the
collapse of the upper airway, quite often the area of interest for patients diagnosed
with obstructive sleep apnea.
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Fig. 15: A universal mesh can be used to generate tetrahedral meshes that conform
to curves on surfaces. As a first step, a conforming mesh of the given surface is
generated from the background universal mesh, as shown in the top left and top
middle figures. We then construct a planar parametrization from the corresponding
surface triangulation (top right), and conform the mapped mesh to the curve in the
parametric planar domain. Mapping then back to the real space we obtain a surface
triangulation that conforms to the curve on the surface (bottom left), and after a
relaxation step of the nodes near the surface to ensure good quality of the tetrahedra,
we obtain the resulting mesh (bottom middle). The distribution of the qualities of
tetrahedra in this mesh is shown at the bottom right.


