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Abstract. In this paper we develop and test a structure-preserving discretiza-
tion scheme for rotating and/or stratified fluid dynamics. The numerical

scheme is based on a finite dimensional approximation of the group of vol-
ume preserving diffeomorphisms recently proposed in [25, 9] and is derived

via a discrete version of the Euler-Poincaré variational formulation of rotating

stratified fluids. The resulting variational integrator allows for a discrete ver-
sion of Kelvin circulation theorem, is applicable to irregular meshes and, being

symplectic, exhibits excellent long term energy behavior. We then report a

series of preliminary tests for rotating stratified flows in configurations that
are symmetric with respect to translation along one of the spatial directions.

In the benchmark processes of hydrostatic and/or geostrophic adjustments,
these tests show that the slow and fast component of the flow are correctly
reproduced. The harder test of inertial instability is in full agreement with the

common knowledge of the process of development and saturation of this in-

stability, while preserving energy nearly perfectly and respecting conservation
laws.

1. Introduction. Numerical simulations of rotating stratified flows are of obvious
importance in modeling atmospheric and oceanic dynamics at different spatial and
temporal scales, and are being massively and routinely performed. In spite of con-
stant progress in numerical schemes which are successfully used for this purpose,
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the respect of the intrinsic structure of the equations of fluid motion is rarely dis-
cussed or addressed while developing and/or implementing new codes. Yet, in the
limit of infinite Reynolds (or Péclet) number, which is relevant for e.g. large-scale
atmospheric or oceanic flows [26], the equations of motion of the stratified rotating
fluid possess a specific geometric structure [28]—as do the related Euler equations
[2, 3]. Physically, this structure manifests itself in specific Lagrangian conserva-
tion laws, the most celebrated being the conservation of potential vorticity which
alone allows one to understand many processes taking place in the atmosphere, the
ocean, or in laboratory experiments (e.g. [16]). We remind the reader that po-
tential vorticity, whose Lagrangian conservation follows from Ertel’s theorem, is a
quantity constructed by projecting the absolute (i.e. relative plus planetary, which
is due to rotation) vorticity onto the density gradient and dividing the result by the
total density. Conservation of potential vorticity follows from Kelvin’s circulation
theorem [10]. The existence of a variational (Hamilton’s) principle allows one to
interpret this circulation theorem in terms of the general Noether theorem, link-
ing conservation laws to symmetries. Conservation of potential vorticity, thus, is
related to the symmetry with respect to Lagrangian particle relabeling [28]. One
should recall that so-called balanced models in geophysical fluid dynamics, like
the famous quasigeostrophic model [26] (which are extensively used to understand
large-scale atmospheric and ocean dynamics as well as in climate modeling [23])
are an expression of potential vorticity conservation in a certain range of scales.
They too possess a (reduced) variational principle [14]. On the other hand, the
(non-canonical) Hamiltonian structure of the fluid dynamics equations suggests the
use of so-called symplectic integrators [11] allowing for very accurate long-term
conservation of energy.

The question of relevance of the accurate representation of the conservation laws
in a numerical scheme, which should eventually simulate a forced-dissipative real
world, is often debated—but has never been systematically investigated. Some
studies comparing simulation with structure-preserving and standard schemes do
show differences [19], [1]. We believe that capturing conservation laws is in fact
numerically crucial, especially in the context of large-scale atmosphere and ocean
dynamics at extremely high Reynolds numbers, as well as for long-time climatic
simulations.

In this paper, we develop and test a structure-preserving space-time discretiza-
tion scheme for rotating and/or stratified fluid dynamics. In order to achieve this
goal, we use a recently developed structure-preserving discretization for the incom-
pressible Euler equations and its extension to incompressible fluids with advected
quantities [25, 9], together with the geometric interpretation of the dynamics of
ideal rotating and/or stratified fluids via Euler-Poincaré variational principles [13].
We will limit ourselves in this paper to models that are symmetric with respect to
translations along one of the spatial directions configurations (so-called 2.5 dimen-
sional systems).

The paper is organized as follows. In Section 2, we recall the theory of continuous
and discrete Euler-Poincaré formulations, the construction of the discrete diffeomor-
phism group, and the derivation of the associated structure-preserving discretization
of Euler equations. In Section 3 we derive a structure-preserving discretization for
two-dimensional non-rotating stratified fluids. We then give a geometric Euler-
Poincaré formulation of rotating non-stratified (Section 4), and rotating stratified
(Section 5) fluids in the 2.5 dimensional situation and use this formulation to derive
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a structure-preserving discretization. We finally present tests of our new numerical
schemes in Section 6.

2. Continuous and discrete Euler-Poincaré equations. Our approach is based
on a few essential ingredients. First, we leverage the geometric interpretation (and
its underlying variational principle) of the flow of an ideal incompressible fluid as a
geodesic on the group of volume-preserving diffeomorphisms of the domain of the
flow [2]. This key geometric picture is known to extend to the case where additional
fields are advected by the flow [13], yet interact with it through body forces. Sec-
ond, we rely on symplectic integrators [11], obtained via extremization of variational
principles [22], to numerically ensure good energy energy behavior as well as exact
conservation laws due to Noether’s theorem. Finally, we adopt the construction of
a consistent spatial discretization of the group of volume preserving diffeomorphism
recently proposed in [25], as well as its further developments for incompressible
continuum theories [9].

In this section we first recall the formal theory of Euler-Poincaré reduction with
advected quantities and the associated circulation theorem, both at the continuous
and discrete level. We then review the construction of the discrete volume preserving
diffeomorphism group together with the resulting variational integrator for the Euler
equations of an ideal fluid.

2.1. Euler-Poincaré theory with advection. From the work of Arnold (see,
e.g., [2]), it is well known that the flow of the Euler equations of an ideal fluid
of constant density describes a geodesic on the group of volume preserving diffeo-
morphisms of the domain of the fluid, relative to a right invariant L2 Riemannian
metric. More precisely, let us denote by M ⊂ Rn the domain of the fluid (supposed
to be compact and with smooth boundary) and denote by Diffvol(M) the group of
all volume preserving diffeomorphisms M . The motion of an incompressible fluid is
completely characterized by a curve ϕt ∈ Diffvol(M): a particle located at a point
X at time t = 0 travels to x = ϕt(X) at time t. The equations of motion can
naturally be derived from Hamilton’s variational principle

δ

∫ T

0

L(ϕ, ϕ̇)dt = 0, where L(ϕ, ϕ̇) =
1

2

∫
M

|ϕ̇|2dV.

As this Lagrangian is invariant under particle relabeling, that is, the action of
Diffvol(M) on itself by composition on the right, the variational principle can be
rewritten in terms of the Eulerian velocity u(x, t) verifying ϕ̇(X) = u(ϕt(X), t), i.e.
u = ϕ̇ ◦ ϕ−1. One then obtains the following constrained variational principle

δ

∫ T

0

`(u)dt = 0, where `(u) =
1

2

∫
M

|u|2dV,

subject to constrained variations δu = v̇− [v,u], where v is an arbitrary divergence
free vector field and [ , ] is the vector field commutator.

In order to implement the variational integrator based on the discretization of
the diffeomorphism group, it will be crucial to understand the relation between the
Lagrangian and the Eulerian variational principle from a more abstract point of
view. This is done by using the theory of Euler-Poincaré reduction, see [21], valid
for any G-invariant Lagrangian system on a Lie group G. Taking G = Diffvol(M)
recovers Arnold’s formulation of ideal fluids, and explains the associated variational
principle.
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In the context of geophysical fluid dynamics, there is a new element related to the
density or (potential) temperature fluctuations interacting with velocity field. In
what follows we will use the Boussinesq approximation where these fluctuations are
advected by the flow. Yet, they are coupled to the velocity field through gravity. The
abstract formalism allowing for such a more general situation has been described in
[13] and will be of crucial use to derive a variational integrator, as has been done in
[9]. The Euler-Poincaré theory with advected quantities is briefly reviewed below.

2.1.1. Continuous theory. Let G be a Lie group acting on the right on a vector
space V . We will denote by

(g, v) ∈ G× V 7→ vg ∈ V and (g, a) ∈ G× V ∗ 7→ ag ∈ V ∗,

the action of G on V and its dual V ∗. The associated infinitesimal actions of the
Lie algebra g of G are defined by

vξ :=
d

dt

∣∣∣∣
t=0

v exp(tξ) and aξ :=
d

dt

∣∣∣∣
t=0

a exp(tξ)

for ξ ∈ g, v ∈ V , a ∈ V ∗, and where exp : g → G denotes the exponential map of
the Lie group G.

In application to incompressible fluids in a domain M , the group G is the group
Diffvol(M) of all volume preserving diffeomorphisms of M and the space V is such
that its dual space contains the variables advected by the flow such as buoyancy,
entropy, or magnetic field, on which the diffeomorphism group acts by pullback. The
Lie algebra g of Diffvol(M) is the space Xdiv(M) of divergence-free vector fields on
M , and its dual may be identified with Ω1(M)/dΩ0(M), the space of one-forms on
M modulo full differentials.

We now recall from [13] the Euler-Poincaré reduction process with advected
quantities. Note that in this paper, we will apply this formalism to fluids both
at the continuous and the discrete level, that is, when the group G is the infinite
dimensional group of volume preserving diffeomorphisms or the finite dimensional
group of discrete volume preserving diffeomorphisms. It is therefore crucial to
formulate this reduction process in the abstract setting, that is, for an arbitrary
Lie group G. Moreover, this formalism allows us to describe an abstract Kelvin
circulation theorem that can be applied both at the continuous and discrete levels.

Theorem 2.1. Assume that the function L : TG × V ∗ → R is right G-invariant,
so that upon fixing a0 ∈ V ∗, the Lagrangian La0 : TG → R defined by La0(vg) :=
L(vg, a0) is right Ga0-invariant, where Ga0 denotes the isotropy subgroup of a0.
Define ` : g× V ∗ → R by

`(vgg
−1, a0g

−1) = L(vg, a0).

Given a curve g(t) in G, define ξ(t) := ġ(t)g(t)−1 ∈ g and a(t) = a0g(t)−1 ∈ V ∗.
Then the following are equivalent:

i. With a0 held fixed, Hamilton’s variational principle

δ

∫ T

0

La0(g(t), ġ(t))dt = 0,

holds, for variations δg(t) of g(t) vanishing at the endpoints.
ii. g(t) satisfies the Euler-Lagrange equations for La0 on G.
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iii. The constrained variational principle

δ

∫ T

0

`(ξ(t), a(t))dt = 0,

holds on g× V ∗, upon using variations of the form

δξ =
∂η

∂t
− [ξ, η], δa = −aη,

where η(t) ∈ g vanishes at the endpoints.
iv. The following Euler-Poincaré equations hold on g× V ∗:

∂

∂t

δ`

δξ
= − ad∗ξ

δ`

δξ
+
δ`

δa
� a, (1)

where � : V ∗ × V → g∗ is the bilinear operator defined by

〈v � a, ξ〉 = −〈aξ, v〉 , for all v ∈ V , a ∈ V ∗, and ξ ∈ g.

2.1.2. The Kelvin-Noether theorem. The Kelvin-Noether theorem is a version of
Noether’s theorem that holds for solutions of the Euler-Poincaré equations. In
particular, a direct application of this theorem to the Euler equations gives rise
to Kelvin’s circulation theorem. We provide here the abstract formulation of the
Kelvin-Noether theorem, following [13]. Let G be a Lie group which acts from the
left on a manifold C and suppose that K : C ×V ∗ → g∗∗ is an equivariant map, that
is 〈
K(g−1c, ag),Ad∗g µ

〉
= 〈K(c, a), µ〉 , for all g ∈ G, c ∈ C, a ∈ V ∗, and µ ∈ g∗.

Let g(t), ξ(t), a(t) be solutions of the Euler-Poincaré equation (1) with an initial
advected parameter a0; further define c(t) := g(t)c0 and

I(t) :=

〈
K(c(t), a(t)),

δ`

δξ
(t)

〉
. (2)

Then we have the conservation law

d

dt
I(t) =

〈
K(c(t), a(t)),

δ`

δa
� a(t)

〉
. (3)

In the case of the incompressible Euler equations, the Lie group is G = Diffvol(M)
and there is no advected quantity a. The manifold C is the space of loops in the
domain M and the function K : C → Xdiv(M)∗∗ is

〈K(γ), α〉 =

∫
γ

α, (4)

where α is a one-form in Ω1(M)/dΩ0(M). So in this case the double dual Xdiv(M)∗∗

is identified with the space of closed loops in M . With these choices (3) recovers
the usual circulation theorem

d

dt

∫
γt

u · dx = 0,

where γt is a loop advected by the flow.
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2.1.3. Temporal discretization of Euler-Poincaré equations and symplecticity. We
now describe, following [9], a variational integrator for the Euler-Poincaré equations
(1). It is adapted from [7] to the case with advected quantities.

Consider a sequence of points g0, g1, ..., gK ∈ G and ξ0, ξ1, ..., ξK−1 ∈ g forming
the discretization of the curves g(t) ∈ G and ξ(t) ∈ g, and fix a time step h. The
relations ξ(t) = ġ(t)g(t)−1 and a(t) = a0g(t)−1 are discretized as

ξk = τ−1(gk+1g
−1
k )/h and ak = a0g

−1
k ,

where τ : g → G is a local approximant of the exponential map. Such a map τ is
called a group difference map if it is a local diffeomorphism taking a neighborhood
of 0 ∈ g to a neighborhood of e ∈ G, with τ(0) = e and τ(ξ)−1 = τ(−ξ). Given
ξ ∈ g, we denote by dτξ : g→ g the right trivialized tangent map defined as

dτξ(δ) := (Dτ(ξ) · δ) τ(ξ)−1, δ ∈ g.

We use dτ−1ξ : g→ g to refer to the inverse of this map, and
(
dτ−1ξ

)∗
: g∗ → g∗ for

the dual map.
The discrete analogue of the action

sa0(g(t)) =

∫ T

0

`(ξ(t), a(t))dt

is given by

sa0d
(
(gk)Kk=0

)
=

K−1∑
k=0

`(ξk, ak)h,

and the discrete Euler-Poincaré equations are obtained by applying the following
discrete variational principle

δsa0d
(
(gk)Kk=0

)
= 0, (5)

for arbitrary variations δgk of gk such that δg0 = δgK = 0.

Theorem 2.2. Let ` : g → R be a Lagrangian, h a time step and τ : g → G a
group difference map. Then the discrete variational principle (5) yields the update
equations 

(
dτ−1−hξk

)∗ δ`
δξk

=
(
dτ−1hξk−1

)∗ δ`

δξk−1
+ h

δ`

δak
� ak

ak+1 = akτ(−hξk).

(6)

Being variational, this scheme yields a symplectic integrator, as explained in [22],
[9].

2.1.4. Discrete Kelvin-Noether theorem. The discrete analogue of the quantity I(t)
defined in (2) is given by

Ik :=

〈
K(ck, ak),

(
dτ−1−hξk

)∗ δ`
δξk

〉
and the discrete Kelvin-Noether theorem reads as follows:

Theorem 2.3. Suppose that the sequence gk, ξk, ak satisfies the discrete Euler-
Poincaré equations (6), and define ck := c0g

−1
k . Then the quantity Ik satisfies

Ik − Ik−1
h

=

〈
K(ck, ak),

δ`

δak
� ak

〉
.

We refer to [9] for a proof and more explanations.
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2.2. Discretization of the diffeomorphism group. In order to apply the above
temporal discretization for numerical simulations of fluid flows, it is necessary to
further discretize the diffeomorphism group Diffvol(M) by substituting it with a
finite dimensional matrix Lie group. This approach, initiated in [25], is recalled
here.

Given a mesh M on the fluid domain M with cells Ci, i = 1, ..., N , define a
diagonal N × N matrix Ω consisting of cell volumes: Ωii = Vol(Ci). In [25] it is
shown that an appropriate choice of a group to represent discrete volume preserving
diffeomorphisms is the matrix group

D(M) =
{
q ∈ GL(N)+ | q · 1 = 1 and qTΩq = Ω

}
, (7)

i.e., Ω-orthogonal, signed stochastic matrices. Here 1 denotes the column (1, ..., 1)T

so that the first condition reads
∑N
j=1 qij = 1 for all i = 1, ..., N .

We now explain the main idea behind this definition. Consider the linear action
of Diffvol(M) on the space F(M) of functions on M , given by

f ∈ F(M) 7→ f ◦ ϕ−1 ∈ F(M), ϕ ∈ Diffvol(M). (8)

The two key properties of this linear map are the following:
(1) it preserves the L2 inner product of functions;
(2) it preserves the constant functions: C ◦ ϕ−1 = C.
In the discrete setting, a function is replaced by a vector F ∈ RN , whose value Fi
on cell Ci is regarded as the cell average of the continuous function. Therefore, the
discrete L2 inner product of two discrete functions is defined by

〈F,G〉0 = FTΩG =

N∑
i=1

FiΩiiGi.

The discrete diffeomorphism group (7) is such that its action on discrete functions,
i.e. on RN , by matrix multiplication, is an approximation of the linear map (8).
It is simple to verify that the conditions q · 1 = 1 and qTΩq = Ω are the discrete
analogues of the conditions (1) and (2) above.

The Lie algebra of D(M), denoted d(M), is the space of Ω-antisymmetric, row-
null matrices:

d(M) = {A ∈ gl(N) | A · 1 = 0 and ATΩ + ΩA = 0}.

The matrices A ∈ d(M) are thus the discrete divergence free vector fields.

Discrete differential forms. As we mentioned above, a discrete function (zero-
form) on the mesh is given by a vector F ∈ RN . We will denote by Ω0

d(M) the space
of discrete functions.

A discrete 1-form on M is an antisymmetric matrix K ∈ so(N). The space of
discrete 1-form is denoted by Ω1

d(M). The discrete exterior derivative of a discrete
function F is the discrete 1-form dF given by

(dF )ij := Fi − Fj .

Similarly, discrete 2-forms in Ω2
d(M) are given by antisymmetric trilinear forms on

RN . The exterior derivative of a 1-form K ∈ Ω1
d(M) is the discrete 2-form

(dK)ijk := Kij +Kjk +Kki.

These definitions, designed to enforce Stokes’ theorem at the discrete level, are
common to most finite-dimensional notions of exterior calculus (see, e.g., [6, 4, 8]).
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The discrete analogue of the L2 pairing

〈α,X〉 =

∫
M

α ·X (9)

between 1-forms α ∈ Ω1(M) and vector fields X ∈ X(M) is given by

〈K,A〉 = Tr(KTΩA), K ∈ Ω1
d(M), A ∈ d(M). (10)

Recall that using the L2 pairing (9), the dual space Xdiv(M)∗ can be identified with
Ω1(M)/dΩ0(M). Remarkably, this duality holds in the discrete setting, namely,
using the discrete L2 pairing (10), we have (see Theorem 2.4 in [9])

d(M)∗ ' Ω1
d(M)/dΩ0

d(M).

Adjoint and coadjoint actions, Lie derivatives. Recall that the adjoint and
coadjoint actions of the group Diffvol(M) are given by pushforward and pullback
by the diffeomorphism ϕ:

Adϕ u = ϕ∗u Ad∗ϕ α = ϕ∗α,

where u ∈ Xdiv(M) and α ∈ Ω1(M)/dΩ0(M). The Lie bracket [u,v] on the Lie
algebra Xdiv(M) of Diffvol(M) is minus the usual Jacobi-Lie bracket of vector fields

[u,v] = adu v =
d

dt

∣∣∣∣
t=0

Adϕt v =
d

dt

∣∣∣∣
t=0

(ϕt)∗v = −£uv,

where £uv is the Lie derivative of v along u.
In the discrete setting, that is, for the group D(M), we have the equivalent

formulas

Adq A = qAq−1 Ad∗q K = q−1KΩqΩ−1. (11)

The discrete Lie derivatives of vector fields and 1-forms are thus

£AB = −[A,B] = −(AB −BA) £AK = −[A,KΩ]Ω−1. (12)

Discrete loops. Recall that in the continuous case, the double dual space Xdiv(M)∗∗

was identified with the closed loops in M via the pairing

〈γ, α〉 =

∮
γ

α,

where γ : S1 →M is a closed loop in M and α ∈ Xdiv(M)∗ = Ω1(M)/dΩ0(M). In
the discrete case, since the space d(M) is finite dimensional, we can simply identify
the double dual d(M) with itself, and consider d(M)∗∗ as the space of discrete loops.
This is consistent with Arnold’s treatment of Kelvin circulation theorem, see [5],
[25]. The discrete analogue of (4) is thus given by

〈K(Γ),K〉 = 〈Γ,K〉 , Γ ∈ d(M)∗∗, K ∈ Ω1
d(M)/dΩ0

d(M). (13)

Nonholonomic constraints. For a smooth curve q(t) ∈ D(M), the matrix A(t) =
q̇(t)q(t)−1 describes the infinitesimal exchanges of fluid particles between any pairs
of cells Ci and Cj . For computational efficiency, we further assume that Aij is non-
zero only if cells Ci and Cj share a common boundary. This defines a constrained
set S ⊂ d(M),

S = {A ∈ d(M) | Aij 6= 0⇒ j ∈ N(i)}, (14)

where N(i) denotes the set of indices of adjacent cells to cell Ci. Since the Lie
bracket of A,B ∈ S is not necessarily in S, this constraint is nonholonomic. This
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constraint will affect the variational principle, since it imposes the use of constrained
variations. The standard Euler-Poincaré variational principle

δ

∫ T

0

`(A)dt = 0, for variations δA = ∂tB + [B,A]

must therefore be replaced by

δ

∫ T

0

`(A)dt = 0, with A ∈ S and (15)

for variations δA = ∂tB + [B,A], B ∈ S.

As shown in [25], the relation between a discrete vector field A ∈ S and the
corresponding continuous vector field u ∈ Xdiv(M) is

Aij ' −
1

2Ωii

∫
Dij

u · nijdS, (16)

where Dij is the boundary common to cell i and j and nij is the normal vector field
on Dij pointing from Ci to Cj .

The flat map. A major issue of the discrete approach is to find an approximation
of the L2 inner product of divergence free vector fields. In view of the approach we
use, it is more convenient to work on an arbitrary Riemannian manifold M with
metric g. In this setting, the L2 inner product reads∫

M

g(u,v)dx =

∫
M

u[ · vdx =
〈
u[,v

〉
,

where u[ is the 1-form associated to the vector field u with the Riemannian metric
g. Therefore, an approximation of the L2 inner product can be found through the
introduction of a discrete flat operator. If we denote by Mε a mesh with resolution
ε, a discrete flat operator is defined as an operator [ : S ⊂ d(M)→ Ω1

d(M) satisfying〈
A[εε , Bε

〉
→ 〈u,v〉〈

A[εε , [Bε, Cε]
〉
→ 〈u, [v,w]〉〈

A[, B
〉

=
〈
B[, A

〉
,

for any Aε, Bε, Cε ∈ S that respectively approximate the continuous vector fields
u,v,w, where the limit above is taken as ε→ 0.

2.3. Review of the discrete Euler equations. As we already recalled earlier,
the Euler equations

∂tu + u · ∇u = −∇p (17)

can be obtained by Euler-Poincaré theory (Theorem 2.1) for the groupG = Diffvol(M)
and for the Lagrangian ` : g = Xdiv(M)→ R given by

`(u) =
1

2

∫
M

|u|2dx.

In view of the discrete approach used below, it is important to consider the equations
(17) as written on a general Riemannian manifold M , with Riemannian metric g.
In this case, ∇u is the Levi-Civita covariant derivative of u associated to the metric
and ∇p is the gradient of p, taken relative to the Riemannian metric.
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Note that the Euler equations (17) can be equivalently written as

∂tu
[ + £uu[ = −dq, (18)

where u[ is the 1-form associated to u using the Riemannian metric on M , £uu[

is the Lie derivative of the one-form u[, and q = p− 1
2 |u|

2. The equivalence of (17)
and (18) follows from the identity

£uu[ = u · ∇u[ +
1

2
d|u|2.

Spatial discretization. Spatial discretization of the Euler equation is obtained
by considering the discrete Lagrangian ` : d(M)→ R,

`(A) =
1

2

〈
A[, A

〉
. (19)

Applying the Euler-Poincaré variational principle with nonholonomic constraints
(15), we get the equations (

∂tA
[ + £AA

[ + dP
)
ij

= 0 (20)

for all i, j, such that j ∈ N(i). More explicitly, using (12), this reads

∂tA
[
ij + [A[Ω, A]ij

1

Ωjj
= −(Pi − Pj), j ∈ N(i).

Temporal discretization. The discrete Euler-Poincaré equations (6) applied to
the discrete diffeomorphism group D(M) and the Lagrangian (19) yields the update
equations ((

dτ−1−hAk

)∗
A[k −

(
dτ−1hAk−1

)∗
A[k−1 + dPk

)
ij

= 0, (21)

where τ is a group difference map. A convenient and computationally efficient
choice for τ is the Cayley transform

τ : d(M)→ D(M), τ(A) =

(
I − A

2

)−1(
I +

A

2

)
(22)

and one verifies the formulas(
dτ−1A

)∗
K =

(
I − 1

2
£A

)
K − 1

4
AKΩAΩ−1,

so that (21) reads(
A[k −A[k−1

h
+

£Ak
A[k + £Ak−1

A[k−1
2

+
h

4

(
Ak−1A

[
k−1ΩAk−1Ω−1 −AkA[kΩAkΩ−1

)
+ dPk

)
ij

= 0.

As explained in [9], cubic terms (matrix products involving three elements of d(M))
can be ignored in the above equations, without altering the discrete Kelvin-Noether
theorem that still holds exactly. The discrete equations then reduce to(

A[k −A[k−1
h

+
£Ak

A[k + £Ak−1
A[k−1

2
+ dPk

)
ij

= 0.

The discrete Kelvin-Noether theorem. We now apply Theorem 2.3 to the case
of the Euler equations. Let C = d(M)∗∗ = d(M) 3 Γ be the space of discrete loops
in M and let D(M) act on C by discrete pullback Γ · q = q−1Γq, see (11). Recall
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from (13) that the quantity K : C → g∗∗ is given by K(Γ) = Γ. So, the discrete
Kelvin-Noether Theorem 2.3 says that the quantity

Ik =
〈

Γk,
(
dτ−1−hAk

)∗
A[k

〉
verifies

Ik = Ik−1,

where Γk = Γ0 · q−1k is a discrete loop advected by the discrete fluid flow.

The case of a 2D Cartesian grid. We now compute (20) and (21) for a 2D
Cartesian grid with uniform spacing ε. Assume that the discrete vector field A ∈ S
approximates the continuous vector field u = (u, v). If Ci and Cj are horizontally
adjacent cells centered at (a− 1/2, b+ 1/2) and (a+ 1/2, b+ 1/2), then we have

Aij = − 1

2ε
ua,b+1/2

If Ci and Cj are vertically adjacent cells centered at (a + 1/2, b − 1/2) and (a +
1/2, b+ 1/2), then we have

Aij = − 1

2ε
va+1/2,b.

As we have seen, the Lagrangian (19) depends on the choice of an appropriate
flat operator. On the 2D Cartesian grid, the operator [ : S → d(M) defined by

A[ij :=

{
2ε2Aij if j ∈ N(i)

wijε
2
∑
k∈N(i)∩N(j)(Aik +Akj) if j ∈ N(N(i))

(23)

is a discrete flat operator, where wij = 1 if cells Ci and Cj share a single vertex and
wij = 2 if cells Ci and Cj belong to the same row or column.

Using (23) and (12), the Lie derivative is, up to an exact discrete differential,(
£AĀ

[
)
ij

=
ε

2

(
ω̄a,bva,b + ω̄a,b+1va,b+1

)
(24)

if Ci and Cj are horizontally adjacent, and(
£AĀ

[
)
ij

= −ε
2

(
ω̄a,bua,b + ω̄a+1,bua+1,b

)
(25)

if Ci and Cj are vertically adjacent. We used the notations

ua,b :=
ua,b−1/2 + ua,b+1/2

2
, va,b :=

va−1/2,b + va+1/2,b

2

and

ωa,b =
ua,b−1/2 + va+1/2,b − ua,b+1/2 − va−1/2,b

ε
.

The spatially discretized Euler equations (20) is thus given by
∂tu

a,b+1/2 − 1
2

(
ωa,bva,b + ωa,b+1va,b+1

)
= − 1

ε

(
P a+1/2,b+1/2 − P a−1/2,b+1/2

)
∂tv

a+1/2,b + 1
2

(
ωa,bua,b + ωa+1,bua+1,b

)
= − 1

ε

(
P a+1/2,b+1/2 − P a+1/2,b−1/2)

ua+1,b+1/2 + va+1/2,b+1 − ua,b+1/2 − va+1/2,b = 0.



12 DESBRUN, GAWLIK, GAY-BALMAZ AND ZEITLIN

The fully discrete (i.e., discrete-space and discrete-time) Euler equations are given
by 

u
a,b+1/2
k −ua,b+1/2

k−1

h − 1
2

(
ωa,b

k va,b
k +ωa,b+1

k va,b+1
k +ωa,b

k−1v
a,b
k−1+ω

a,b+1
k−1 va,b+1

k−1

2

)
= − 1

ε

(
P
a+1/2,b+1/2
k − P a−1/2,b+1/2

k

)
v
a+1/2,b
k −va+1/2,b

k−1

h + 1
2

(
ωa,b

k ua,b
k +ωa+1,b

k ua+1,b
k +ωa,b

k−1u
a,b
k−1+ω

a+1,b
k−1 ua+1,b

k−1

2

)
= − 1

ε

(
P
a+1/2,b+1/2
k − P a+1/2,b−1/2

k

)
u
a+1,b+1/2
k + v

a+1/2,b+1
k − ua,b+1/2

k − va+1/2,b
k = 0

and correspond to a Crank-Nicholson time update. As explained in [25] this spatial
discretization of the Euler equations on the regular grid coincides with the Harlow-
Welsh scheme [12], albeit with a different time update. Therefore, the variational
scheme can be seen as an extension of this approach to arbitrary grids, offering
the added bonus of proving a geometric picture. Moreover, this geometric picture
helps extend this scheme to important models of incompressible fluids with advected
quantities, as shown in [25] and as will be done below for stratified rotating fluids,
while preserving the attractive properties of the scheme such as its symplecticity, a
discrete Kelvin circulation theorem, and very accurate conservation of energy.

3. 2D stratified flow in the Boussinesq approximation. We now start dis-
cussing generalizations of pure Eulerian fluid dynamics by including the effects of
gravity and stratification (variable density). In the presence of gravity, density vari-
ations will enter the equation (17) via the buoyancy acceleration. We remind the
reader that in the Boussinesq approximation the density variations with respect to
some reference density value (which will be taken to be equal to unity, as in (17))
are neglected everywhere except the buoyancy term in the momentum equations.
At the same time, mass conservation equations are split into two: the incompress-
ibility equation, and the equation of advection of density fluctuations. Below we
will use the full buoyancy variable b = g ρ

ρ0
, where ρ0 is background density, g is the

gravitational acceleration, and ρ is density. The equations for incompressible two
dimensional Boussinesq flows in the vertical plane thus read{

∂tu + u · ∇u + b z = −∇p

∂tb+ u · ∇b = 0, ∇ · u = 0
(26)

where u = u(x, z) = (u(x, z), w(x, z)) is the velocity, b = b(x, z) is the buoyancy,
p = p(x, z) is the pressure, and z is the vertical unit vector. Note that buoyancy
is a Lagrangian invariant. Potential vorticity is identically zero for such system, as
vorticity is perpendicular to the (x, z)-plane.

Due to the presence of the buoyancy term in the first equation in (26), a straight-
forward linearization around the rest state with constant background stratification
(vertical gradient of buoyancy) gives rise to the linear wave solutions—internal
gravity waves.

3.1. Geometric formulation. The configuration space for the two dimensional
Boussinesq flow is the group G = Diffvol(M) of volume preserving diffeomorphisms
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of the vertical domain M under consideration. The buoyancy b is the advected
parameter on which the diffeomorphism group acts on the right by composition:

b · ϕ := b ◦ ϕ.
The space V ∗ of the general theory (Theorem 2.1) is therefore identified with the
space F(M) of all functions on M , and the infinitesimal action and diamond oper-
ation are thus given by

b · u = u · ∇b and v � b = b∇v.
The fluid Lagrangian ` : g × V ∗ → R is the fluid’s total kinetic energy minus the
potential energy:

`(u, b) =

∫
M

(
1

2
|u|2 − bz

)
dx dz.

Using the equalities

δ`

δu
= u,

δ`

δb
= −z, δ`

δb
� b = −z � b = −b∇z = −b z,

one verifies that the Euler-Poincaré equations (1) produce the system (26) (see [13]).
Kelvin’s circulation theorem reads

d

dt

∮
γt

u · dx = −
∮
γt

b dz.

It is obtained from the abstract formulation (3) by choosing for C the space of loops
in M and the quantity K : C × V ∗ → g∗∗ given by〈

K(γ, b),v[
〉

:=

∫
γ

v[.

Indeed, one can easily compute that〈
K(γ, b),

δ`

δb
� b
〉

= −
∮
γt

b dz.

3.2. Spatial discretization. Consider a mesh M of the fluid domain M . As for the
Euler equations, the spatial discretization of the Boussinesq equation is realized by
replacing Diffvol(M) with the finite dimensional groupD(M), and the representation
space F(M) is replaced by the space RN of discrete functions on the mesh M. A
discrete diffeomorphism is denoted by q ∈ G = D(M) and the discrete buoyancy by
B ∈ V ∗ = RN . The duality pairing between V and V ∗ is given by the discrete L2

pairing of functions

〈F,B〉0 = FTΩB =

N∑
i=1

FiΩiiBi.

The action by discrete pullback is given by B · q = q−1B, so that the infinitesimal
action of a Lie algebra element A ∈ d(M) and the diamond operation respectively
read

B ·A = −AB and F �B = −
(
BFT

)a
, B, F ∈ RN ,

where (M)a denotes the skew-symmetric part of M . The diamond operation is
computed as follows:

〈F �B,A〉 = −〈B ·A,F 〉0 = 〈AB,F 〉0 = (AB)TΩF = BTATΩF = −FTΩAB

= −Tr
(
BFTΩA

)
= −Tr

((
BFT

)a
ΩA
)

= −
〈(
BFT

)a
, A
〉
,

where we used the fact that ΩA for A ∈ d(M) is an antisymmetric matrix.
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The spatially discretized Boussinesq Lagrangian ` : g× V ∗ → R, reads

`(A,B) =
1

2

〈
A[, A

〉
− 〈B,Z〉0 , (27)

where the discrete function Z ∈ RN is the discrete analogue of the coordinate z,
i.e. Zi is the height of the circumcenter of the cell i. The spatially discretized
Euler-Poincaré equations associated to `(A,B) read{ (

∂tA
[ + £AA

[ −
(
BZT

)a
+ dP

)
ij

= 0

∂tB −AB = 0,
(28)

for all i, j, such that j ∈ N(i).

The case of the Cartesian grid. In this case, we choose Za+1/2,b+1/2 = (b +
1/2)ε. If cell i and j are horizontally adjacent we get(

BZT
)a
ij

=
1

2

(
Ba−1/2,b+1/2Za+1/2,b+1/2 − Za−1/2,b+1/2Ba+1/2,b+1/2

)
=
ε

2
(b+ 1/2)

(
Ba−1/2,b+1/2 −Ba+1/2,b+1/2

)
=

1

2
(ZiBi − ZjBj) =

1

2
(Qi −Qj).

If cell i and j are vertically adjacent, we have instead(
BZT

)a
ij

=
1

2

(
Ba+1/2,b−1/2Za+1/2,b+1/2 − Za+1/2,b−1/2Ba+1/2,b+1/2

)
=
ε

2

(
(b+ 1/2)Ba+1/2,b−1/2 − (b− 1/2)Ba+1/2,b+1/2

)
=
ε

2

(
(b− 1/2)Ba+1/2,b−1/2 − (b+ 1/2)Ba+1/2,b+1/2

+ Ba+1/2,b−1/2 +Ba+1/2,b+1/2
)

=
1

2
(ZiBi − ZjBj) + εBa+1/2,b =

1

2
(Qi −Qj) + εBa+1/2,b,

where we defined the discrete function Qi := ZiBi and we used the notation
Ba+1/2,b := 1

2

(
Ba+1/2,b−1/2 +Ba+1/2,b+1/2

)
.

Using the relation

Aij = − 1

2ε
ua,b+1/2 resp. Aij = − 1

2ε
wa+1/2,b

and the formulas (24), resp. (25), we get the spatially discretized Boussinesq equa-
tions on a Cartesian grid

∂tu
a,b+1/2 − 1

2

(
ωa,bwa,b + ωa,b+1wa,b+1

)
= − 1

ε

(
P a+1/2,b+1/2 − P a−1/2,b+1/2

)
∂tw

a+1/2,b + 1
2

(
ωa,bua,b + ωa+1,bua+1,b

)
+Ba+1/2,b = − 1

ε

(
P a+1/2,b+1/2 − P a+1/2,b−1/2)

ua+1,b+1/2 + wa+1/2,b+1 − ua,b+1/2 − wa+1/2,b = 0

∂tB
a+1/2,b+1/2 + 1

2ε

(
ua+1,b+1/2Ba+3/2,b+1/2 − ua,b+1/2Ba−1/2,b+1/2

+wa+1/2,b+1Ba+1/2,b+3/2 − wa+1/2,bBa+1/2,b−1/2) = 0.
(29)
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3.3. Temporal discretization. The discrete Euler-Poincaré equations (6) applied
to the discrete diffeomorphism group D(M) and the Lagrangian (27) yields the
update equations


((
dτ−1−hAk

)∗
A[k −

(
dτ−1hAk−1

)∗
A[k−1 − h

(
BkZ

T
)a

+ dPk

)
ij

= 0

Bk+1 = τ(hAk)Bk

(30)

or, more explicitly,


(
A[k −A[k−1

h
+

£Ak
A[k + £Ak−1

A[k−1
2

−
(
BkZ

T
)a

+ dPk

)
ij

= 0

Bk+1 = τ(hAk)Bk,

(31)

where cubic terms of elements in d(M) have been ignored as in the Euler equations.
On the 2D Cartesian grid, the first equation reads



u
a,b+1/2
k −ua,b+1/2

k−1

h − 1
2

(
ωa,b

k wa,b
k +ωa,b+1

k wa,b+1
k +ωa,b

k−1w
a,b
k−1+ω

a,b+1
k−1 wa,b+1

k−1

2

)
= − 1

ε

(
P
a+1/2,b+1/2
k − P a−1/2,b+1/2

k

)
w

a+1/2,b
k −wa+1/2,b

k−1

h + 1
2

(
ωa,b

k ua,b
k +ωa+1,b

k ua+1,b
k +ωa,b

k−1u
a,b
k−1+ω

a+1,b
k−1 ua+1,b

k−1

2

)
+B

a+1/2,b
k = − 1

ε

(
P
a+1/2,b+1/2
k − P a+1/2,b−1/2

k

)
.

(32)

Boundary conditions fit naturally into the geometric formulation of the above nu-
merical scheme. Tangential boundary conditions are inherent in the nonholonomic
constraints (15), since neighboring cells never share an interface lying on the do-
main boundary. In the case of periodic boundary conditions on a Cartesian grid, we
merely identify pairs of cells on opposite boundaries as neighbors in definition (14)
of the nonholonomic constraint space S.

These constraints are realized in implementations of (32) on a Cartesian grid of
size Nx×Nz as follows. For free-slip boundary conditions, the first relation in (32)
must hold for 1 ≤ a ≤ Nx − 1, 0 ≤ b ≤ Nz − 1, and the second relation must hold
for 0 ≤ a ≤ Nx − 1, 1 ≤ b ≤ Nz − 1, with the understanding that

{
u0,b+1/2 = uNx,b+1/2 = ua,−1/2 = ua,Nz+1/2 = 0

wa+1/2,0 = wa+1/2,Nz = w−1/2,b = wNx+1/2,b = 0.
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For periodic boundary conditions, (32) must hold for 0 ≤ a ≤ Nx − 1, 0 ≤ b ≤
Nz − 1, with the understanding that

P−1/2,b+1/2 ≡ PNx−1/2,b+1/2

P a+1/2,−1/2 ≡ P a+1/2,Nz−1/2

B−1/2,b+1/2 ≡ BNx−1/2,b+1/2

Ba+1/2,−1/2 ≡ Ba+1/2,Nz−1/2

uNx,b+1/2 ≡ u0,b+1/2

ua,−1/2 ≡ ua,Nz−1/2

ua,Nz+1/2 ≡ ua,1/2
wa+1/2,Nz ≡ wa+1/2,0

w−1/2,b ≡ wNx−1/2,b

wNx+1/2,b ≡ w1/2,b.

Mixed boundary conditions (e.g., periodic in x and tangential along the upper
and lower boundaries) can be handled similarly.

Remarks on the implementation. Implementing the temporal update scheme
involves two stages. First, compute Bk = τ(hAk−1)Bk−1 by solving the linear
system (

I − hAk−1
2

)
Bk =

(
I +

hAk−1
2

)
Bk−1.

Next, compute uk, wk, and Pk by using Newton’s method to solve the system of
nonlinear equations consisting of (32) and the constraint

u
a+1,b+1/2
k + w

a+1/2,b+1
k − ua,b+1/2

k − wa+1/2,b
k = 0.

The cost of these two stages is dominated by the second, which amounts to a non-
linear solve in approximately 3NxNz unknowns on a grid of size Nx ×Nz. Compu-
tational cost of the nonlinear solve is often reduced if the Jacobian is approximated
with its incomplete LU factorization and held fixed over several Newton iterations
(or even over several time steps if the flow is stable).

Discrete circulation theorem. Recall from (13) that the discrete circulation is
given by the quantity K : C → g∗∗, K(Γ) = Γ. So, the discrete Kelvin-Noether
Theorem 2.3 says that the quantity

Ik =
〈

Γk,
(
dτ−1−hAk

)∗
A[k

〉
verifies

Ik − Ik−1
h

=

〈
Γk,

δ`

δBk
�Bk

〉
=
〈

Γk,
(
BkZ

T
)a〉

,

where Γk = Γ0 · q−1k is a discrete loop advected by the discrete fluid flow.

3.4. Including the second component of velocity. One can include in the
2D Boussinesq equations the second component of velocity v in the y-direction as
follows 

∂tu + u · ∇u + b z = −∇p

∂tv + u · ∇v = 0

∂tb+ u · ∇b = 0,

(33)

where u = u(x, z) = (u(x, z), w(x, z)) is the velocity in the x and z direction,
b = b(x, z) is the buoyancy, and p = p(x, z) is the pressure. Note that we have now
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two Lagrangian invariants: b and v, and we can construct a new one, the potential
vorticity, as their Jacobian.

These equations are obtained from full 3D Boussinesq equations by supposing
that the flow is symmetric with respect to translations along y; they are thus of-
ten referred to as the 2.5D Boussinesq equations. They admit an Euler-Poincaré
description, by taking the same Lagrangian as above

`(u, v, b) =

∫
M

(
1

2
|u|2 − bz

)
dxdz

without dependence on v, but using as advected quantities the buoyancy b = b(x, z)
and the y-velocity v = v(x, z), on which the diffeomorphism group acts by compo-
sition

b 7→ b ◦ ϕ v 7→ v ◦ ϕ.
The spatially discretized equations are thus obtained exactly as above. We let

the discrete diffeomorphism group act on the discrete buoyancy B ∈ RN and the
discrete y-velocity V ∈ RN by discrete pullback, B · q = q−1B and V · q = q−1V ,
resulting in the following system of equations

(
∂tA

[ + £AA
[ −

(
BZT

)a
+ dP

)
ij

= 0

∂tB −AB = 0

∂tV −AV = 0

(34)

for all i, j, such that j ∈ N(i).
The temporal discretization is obtained as previously presented: one simply adds

to the system (31) the discrete advection equation

Vk+1 = τ(hAk)Vk.

The Kelvin-Noether theorem, as well as the update equations on the Cartesian grid,
are then easily derived.

4. 2.5D rotating Euler equations. We now concentrate on the rotation effects,
excluding stratification. We work with 2.5D rotating Euler equations which are
obtained from the 3D rotating Euler equations, by supposing that the flow is sym-
metric in one spatial direction: ∂y( ) = 0. As the 2.5D Boussinesq equations
treated above, these equations are appropriate as a first approximation while study-
ing jets/fronts (non-rotating in the previous case, and non-stratified in the present
case; we combine both effects in the next Section), which have very different along-
front and across-front scales.

The resulting system reads
∂tu+ uux + wuz − fv = −px
∂tv + uvx + wvz + fu = 0

∂tw + uwx + wwz = −pz,

(35)

with ux + wz = 0 and where u, v, w depend only on (x, z). Here f is the Coriolis
parameter, i.e. twice the angular velocity of rotation, which is supposed to be
around the z- axis. In order to derive a variational integrator, we rewrite these
equations in an Euler-Poincaré form. This is achieved by using the geostrophic
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momentum m := fv + f2x instead of the horizontal velocity v. In terms of m, we
get the system 

∂tu+ uux + wuz −m = −qx
∂tw + uwx + wwz = −qz
∂tm+ umx + wmz = 0,

(36)

(see e.g. [24]), where q = p+ 1
2f

2x2. Note that m is a Lagrangian invariant. The x-
derivative of m is also a Lagrangian invariant and represents the potential vorticity
for this translationally symmetric system. The equations are now identical (upon
identifying m with −b) to the Boussinesq equations (26). The internal gravity waves
of the latter become gyroscopic (or inertial) waves in the rotating Euler equations.

Thus, (36) can be obtained by Euler-Poincaré reduction associated to the La-
grangian

`(u,m) =

∫ (
1

2
|u|2 +mx

)
dx dz,

where u = (u,w).
Kelvin’s circulation theorem,

d

dt

∮
γt

u · dx =

∮
γt

mdx,

is obtained from the abstract formulation (3) by choosing for C the space of loops
in M and the quantity K : C × V ∗ → g∗∗ given in (4). In terms of the original
variables, it reads

d

dt

∮
γt

u · dx =

∮
γt

fv dx.

It is now possible to discretize these equations in the same way as the Boussinesq
equations, by using the spatially discretized Lagrangian

`(A,M) =
1

2

〈
A[, A

〉
+ 〈M,X〉0 ,

where now the discrete function X ∈ RN is the discrete analogue of the coordinate
x. The spatially discretized Euler-Poincaré equations associated to `(A,M) read

(
∂tA

[ + £AA
[ +

(
MXT

)a
+ dP

)
ij

= 0

∂tM −AM = 0,

(37)

for all i, j, such that j ∈ N(i).
On a 2D Cartesian grid, we have Xa+1/2,b+1/2 = (a+ 1/2)ε. Therefore, if cell i

and j are horizontally adjacent, we have(
MXT

)a
ij

=
1

2
(Qi −Qj) + εMa,b+1/2;

if cell i and j are vertically adjacent, we have instead(
MXT

)a
ij

=
1

2
(Qi −Qj) ,
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where Qi = XiMi. Therefore, Eqs. (37) used on a regular grid read

∂tu
a,b+1/2 − 1

2

(
ωa,bwa,b + ωa,b+1wa,b+1

)
−Ma,b+1/2

= − 1
ε

(
P a+1/2,b+1/2 − P a−1/2,b+1/2

)
∂tw

a+1/2,b + 1
2

(
ωa,bua,b + ωa+1,bua+1,b

)
= − 1

ε

(
P a+1/2,b+1/2 − P a+1/2,b−1/2)

ua+1,b+1/2 + wa+1/2,b+1 − ua,b+1/2 − wa+1/2,b = 0

∂tM
a+1/2,b+1/2 + 1

2ε

(
ua+1,b+1/2Ma+3/2,b+1/2 − ua,b+1/2Ma−1/2,b+1/2

+wa+1/2,b+1Ma+1/2,b+3/2 − wa+1/2,bMa+1/2,b−1/2) = 0.
(38)

The temporal discretization can be carried out as previously for the Boussinesq
equations.

To recover the discrete evolution of the original variable v, we use a discrete
version of the geostrophic momentum m = fv + f2x, namely M = fV + f2X, to
obtain the evolution of the discrete velocity V from the evolution of M .

5. 2.5D rotating Boussinesq equations. We now combine the effects of strati-
fication and rotation. Again, we apply the Boussinesq approximation and assume a
configuration rotating with the angular velocity f/2 around the z- axis and invariant
with respect to translations in y- direction. We thus get:

∂tu+ uux + wuz − fv = −px
∂tv + uvx + wvz + fu = 0

∂tw + uwx + wwz + b = −pz
∂tb+ ubx + wbz = 0,

(39)

with ux + wz = 0.
The same change of variable as before, m = fv + f2x, yields the equations

∂tu+ uux + wuz −m = −qx
∂tw + uwx + wwz + b = −qz
∂tm+ umx + wmz = 0

∂tb+ ubx + wbz = 0

(40)

with ux + wz = 0 and where the modified pressure is q = p + 1
2f

2x2. Note that
there are two Lagrangian invariants b and m. The third one, potential vorticity,
can be constructed as the Jacobian of these two. Again, straightforward lineariza-
tion reveals the presence of linear wave solutions, which are internal inertia-gravity
waves.

The equations (40) can be obtained as Euler-Poincaré equations for the La-
grangian

`(u,m, b) =

∫ (
1

2
|u|2 +mx− bz

)
dx dz,

where u = (u,w). In this case, there are two advected quantities, m and b on which
the group Diffvol(M) of volume preserving diffeomorphisms acts by composition on
the right:

m · ϕ = m ◦ ϕ, b · ϕ = b ◦ ϕ.
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Kelvin’s circulation theorem reads

d

dt

∮
γt

u · dx =

∮
γt

mdx−
∮
γt

b dz.

Being in an Euler-Poincaré form, the system (40) can be spatially discretized
using the Lagrangian

`(A,M,B) =
1

2

〈
A[, A

〉
+ 〈M,X〉0 − 〈B,Z〉0 ,

where the discrete functionsX and Z have the same meaning as above. The spatially
discretized Euler-Poincaré equations associated to `(A,M,B) read

(
∂tA

[ + £AA
[ −

(
BZT

)a
+
(
MXT

)a
+ dP

)
ij

= 0

∂tM −AM = 0

∂tB −AB = 0

(41)

for all i, j, such that j ∈ N(i).
On a 2D Cartesian grid, we get

∂tu
a,b+1/2 − 1

2

(
ωa,bwa,b + ωa,b+1wa,b+1

)
−Ma,b+1/2

= − 1
ε

(
P a+1/2,b+1/2 − P a−1/2,b+1/2

)
∂tw

a+1/2,b + 1
2

(
ωa,bua,b + ωa+1,bua+1,b

)
+Ba+1/2,b

= − 1
ε

(
P a+1/2,b+1/2 − P a+1/2,b−1/2)

ua+1,b+1/2 + wa+1/2,b+1 − ua,b+1/2 − wa+1/2,b = 0

∂tM
a+1/2,b+1/2 + 1

2ε

(
ua+1,b+1/2Ma+3/2,b+1/2 − ua,b+1/2Ma−1/2,b+1/2

+wa+1/2,b+1Ma+1/2,b+3/2 − wa+1/2,bMa+1/2,b−1/2) = 0

∂tB
a+1/2,b+1/2 + 1

2ε

(
ua+1,b+1/2Ba+3/2,b+1/2 − ua,b+1/2Ba−1/2,b+1/2

+wa+1/2,b+1Ba+1/2,b+3/2 − wa+1/2,bBa+1/2,b−1/2) = 0,

(42)

where

Ma,b+1/2 =
Ma−1/2,b+1/2 +Ma+1/2,b+1/2

2
,

Ba+1/2,b =
Ba+1/2,b−1/2 +Ba+1/2,b+1/2

2
.

The discrete Kelvin’s (circulation) Theorem 2.3 implies that the quantity

Ik =
〈

Γk,
(
dτ−1−hAk

)∗
A[k

〉
verifies

Ik − Ik−1
h

=

〈
Γk,

δ`

δBk
�Bk +

δ`

δMk
�Mk

〉
=
〈

Γk,
(
BkZ

T
)a − (MkX

T
)a〉

,

where Γk = Γ0 · q−1k is a discrete loop advected by the discrete fluid flow.
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6. Numerical tests. We now report a series of preliminary tests of the proposed
numerical scheme for the three considered configurations, namely for 2D Boussinesq
equations and 2.5D rotating Euler equations (to test separately and respectively
how the scheme treats stratification and rotation) and finally for 2.5D rotating
Boussinesq equations (where both effects are combined). It is important to bear
in mind that in all three cases the system supports internal waves. These are
gravity waves in pure stratified case, inertial (or gyroscopic) waves in pure rotating
case, and inertia-gravity waves in the mixed case. Waves are fast motions, and
it is important that the numerical scheme resolves them well. At the same time
the potential-vorticity bearing motions are slow, and the separation of slow and
fast motions at small Rossby numbers is one of the paradigms of geophysical fluid
dynamics, e.g. [29].

6.1. Hydrostatic adjustment in 2D Boussinesq model. Consider the 2D
Boussinesq equations (26) in the vertical plane. If the fluid is in equilibrium, the
gravitational term is balanced by the pressure term and we have the hydrostatic
balance:

−b =
∂p

∂z
.

If the system is out of equilibrium (due, for example, to a localized heating), it
tends to a balanced state via the process of hydrostatic adjustment [17] by emitting
internal gravity waves.

We test our numerical scheme with the hydrostatic adjustment process. Consider
the hydrostatic equilibrium u(x, z) = w(x, z) = 0 and b(x, z) = −N2z, where N is
the Brunt-Väisälä frequency. The pressure is thus given by p(x, z) = 1

2gN
2z2. We

now consider a localized perturbation of buoyancy. More precisely, for the buoyancy
we consider the initial value

b0(x, z) = −N2z + b̃(x, z),

where b̃(x, z) is a positive function with compact support around a certain point
(x0, z0) (localized perturbation). It is known that the frequency of the emitted
gravity waves verifies the dispersion relation

ω2 − k2xN
2

k2
= 0, (43)

where k = (kx, kz) ∈ Z2 is the wave vector. An important properties of this
dispersion relation is its anisotropy, and the fact that wave frequencies are bounded
from above by N .

To test our variational integrator in this situation, we consider the equations
(26) in the domain (x, z) ∈ [0, 24] × [0, 1] with free-slip boundary conditions along
[0, 24]×{0} and [0, 24]×{1}, periodicity in x, and take N = 1. The Brunt-Väisälä
period, i.e. the minimal period of internal gravity waves is 2π under this scaling.
For the buoyancy perturbation, we choose the initial condition

b̃(x, z) =

{
−z + β exp

(
−r20
r20−r2

)
if r < r0

−z if r > r0
(44)

with r0 = 0.2, β = 0.3, r2 = (x−12)2+(z−0.5)2. Our scheme (32) was implemented
on a 384 × 16 grid, from t = 0 to t = 100 with the time step ∆t = 0.5. Long-time
energy conservation is obtained as expected (Fig. 1) due to the symplecticity of our
integrator.
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Figure 1. Long-time energy evolution for the hydrostatic adjust-
ment problem in 2D Boussinesq model.

The graph Fig. 2 displays the Fourier transform of the time series of the buoyancy
b(x, z, t) for t ∈ [0, 100] at various locations (x, z) in the domain. The integers ix
and iz are the indices of the cell whose center is the point (x, z), in the 384×16 mesh
of the domain [0, 24]× [0, 1]. For instance, the cell with (ix, iz) = (192, 8) is near the
center of the grid and its upper right corner has coordinates (x, z) = (12, 0.5). It is
clearly seen that the spectra in all locations sharply drop beyond unity, which is the
non-dimensional value of N , in accordance with (43). A well pronounced maximum
at unity in the middle of the domain (middle column), where the initial perturbation
was located, is also consistent with (43), as the group velocity of the waves tends
to zero at ω → N and, hence, the corresponding part of initial perturbation cannot
be evacuated.

The snapshots of the evolution of the buoyancy field in the region [11, 13]× [0, 1]
which are presented in Fig. 3 confirm the wave emission from the initial perturba-
tion. With our boundary conditions, waves are being reflected from the boundaries,
but the initial stages clearly show emission from the localized source.

Finally, Fig. 4 shows the buoyancy averaged over 0 < t < 100. The mean state is
stably stratified and horizontally uniform as it should. We repeated the simulation
with different domain geometries, all confirming the standard scenario of hydrostatic
adjustment.

Geostrophic adjustment in 2.5D rotating Euler equations. As mentioned
in Sect. 4, 2.5D rotating Euler equations are equivalent to 2D Boussinesq equations
under appropriate changes of variables, so the above-discussed simulations apply to
the geostrophic adjustment process, i.e. adjustment of velocity and pressure to the
geostrophic balance, given by the relation

fv =
∂p

∂x
,
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Figure 2. Frequency spectra of buoyancy at different locations
in the flow domain for the hydrostatic adjustment problem in 2D
Boussinesq model.

by emitting the gyroscopic waves with dispersion relation

ω2 =
f2k2z
|k|2

.

6.2. Adjustment in the 2.5D rotating Boussinesq equations. Consider now
the equation (39). Similarly to what we have seen before, an exact solution is
provided by balancing the Coriolis and gravitational terms by the pressure force
(the so-called thermal wind relations):

fv =
∂p

∂x
, fu = 0, b = −∂p

∂z
. (45)

Such a situation is realized for example when u = w = 0, v(x, z) = Kx, b(x, z) =
−N2z, p = 1

2Kx
2 + 1

2N
2z2, with K a constant and N the Brunt-Väisälä frequency.

We consider that such equilibrium state is disturbed by a localized perturbation of
the buoyancy. In this case, the frequency of the emitted wave verifies the dispersion
relation

ω2 =
f(K + f)k2z +N2k2x

|k|2
. (46)
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Figure 3. Wave emission in the buoyancy field during the hy-
drostatic adjustment problem in 2D Boussinesq. The correspond-
ing animation may be viewed at http://www.geometry.caltech.
edu/Movies/BoussinesqAIMS/boussinesq4.avi

This frequency is bounded from above and below. In the simplest case of the absence
of background shear, i.e. K = 0, we have f < ω < N (we assume f < N , which is
the case of the ocean and the atmosphere).

To illustrate the behavior of our integrator in this situation, we consider the
equations (39) on the domain (x, z) ∈ [−1, 2] × [−1, 2], with free-slip boundary
conditions and we take K = 0, f = 1, N = 4. For buoyancy, we choose the same
initial condition as (44), with r0 = 0.2, β = 0.3, r2 = (x − 0.5)2 + (z − 0.5)2. Our
variational integrator (42) was implemented on a 96× 96 grid from t = 0 to t = 80
with the time step ∆t = 0.2.

http://www.geometry.caltech.edu/Movies/BoussinesqAIMS/boussinesq4.avi
http://www.geometry.caltech.edu/Movies/BoussinesqAIMS/boussinesq4.avi
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Figure 4. Mean of the buoyancy b during the hydrostatic adjust-
ment process 0 < t < 100.

Of course, the rigid boundaries prevent inertia-gravity waves from escaping from
the domain, so the adjusted state may be expected only for time-averaged quantities,
the time-averaging obviously filtering rapidly oscillating waves.

In the series of snapshots presented in Fig. 5, we display the evolution of the
buoyancy perturbation b+N2z with superimposed velocity field (u,w) in the region
[0, 1]× [0, 1].
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Figure 5. Inertia-gravity waves in the buoyancy perturbation dur-
ing the geostrophic adjustment in rotating Boussinesq equations.
The corresponding animation may be viewed at http://www.

geometry.caltech.edu/Movies/BoussinesqAIMS/both5b+N2z

.avi

Emission of inertia-gravity waves from the initial perturbation is clearly seen,
displaying a characteristic ”St. Andrew’s cross” pattern [18].

The plots of Fig. 6 display the Fourier transform of the time series for the buoy-
ancy b(x, z, t) for t ∈ [0, 80] at various locations (x, z) in the domain. The integers
ix and iz are the indices of the cell with the center at the point (x, z). They
clearly show that the frequencies lie in the band 1, 4, i.e. between f and N in
non-dimensional terms, confirming the inertia-gravity wave nature of the signal.

In the sequence of images presented in Fig. 7 the contour plots showing m(x, z)
with superimposed velocity field as a function of time demonstrate the conservation
of the geostrophic momentum in the scheme.

http://www.geometry.caltech.edu/Movies/BoussinesqAIMS/both5b+N2z.avi
http://www.geometry.caltech.edu/Movies/BoussinesqAIMS/both5b+N2z.avi
http://www.geometry.caltech.edu/Movies/BoussinesqAIMS/both5b+N2z.avi
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Figure 6. Frequency spectra of buoyancy during the geostrophic
adjustment process at different locations in the domain.
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Figure 7. Conservation of the geostrophic momentum during the
geostrophic adjustment in rotating Boussinesq equations. The cor-
responding animation may be viewed at http://www.geometry.

caltech.edu/Movies/BoussinesqAIMS/both5m.avi

The graph Fig. 8 illustrates the excellent long term energy behavior, which is
due to the symplecticity of our scheme.

http://www.geometry.caltech.edu/Movies/BoussinesqAIMS/both5m.avi
http://www.geometry.caltech.edu/Movies/BoussinesqAIMS/both5m.avi
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Figure 8. Energy conservation during the geostrophic adjustment
in rotating Boussinesq equations
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Figure 9. Mean v in the geostrophic adjustment process. An ani-
mation of the evolution of the velocity v during the geostrophic
adjustment process may be viewed at http://www.geometry.

caltech.edu/Movies/BoussinesqAIMS/both5v.avi

The time averages of the velocity, of the buoyancy anomaly b + N2z (with the
background stratification removed), and the pressure anomaly p− 1

2N
2z (with pres-

sure due to the basic stratification removed), over the interval 0 < t < 80, are pre-
sented in Figs. 9, 10, 11. They show very good agreement with the thermal wind
relation (45).

http://www.geometry.caltech.edu/Movies/BoussinesqAIMS/both5v.avi
http://www.geometry.caltech.edu/Movies/BoussinesqAIMS/both5v.avi
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Figure 10. Mean buoyancy anomaly in the geostrophic adjust-
ment process.
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Figure 11. Mean pressure anomaly in the geostrophic adjustment process.

The same simulations were carried out with a localized perturbation in v instead
of b, with similar results concerning long term energy behavior and the period of
the emitted waves was found.

6.3. Inertial instability in 2.5D rotating Boussinesq equations. Having seen
that the numerical scheme reproduces well the basic phenomena in the rotating 2.5
D Boussinesq equations we try in this subsection a really hard test of the inertial
instability. The inertial instability is a specific instability of the rotating flows (see,
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e.g., [15]) appearing in the regions where the product of planetary and potential
vorticities is negative. For positive f (Northern hemisphere) we are using, this
means that potential vorticity should be negative somewhere in the flow, meaning
that vorticity should be sufficiently negative. Vorticity may be measured by the
Rossby number of the flow. To make this parameter appear, we rewrite the 2.5D
rotating Boussinesq equations (39) in a nondimensional form, that is,

∂tu+R(uux + wuz)− v = −px
∂tv +R(uvx + wvz) + u = 0

δ2(∂tw +R(uwx + wwz)) + b = −pz
∂tb+R(ubx + wbz) = 0,

(47)

with ux + wz = 0. Here R = U/fL is the Rossby number, with L the horizontal
length scale and U the horizontal velocity scale; δ = H/L is the aspect ratio, with
H the vertical length scale; and we choose 1/f as the time scaling. We fix δ = 1.
In the present case, the geostrophic momentum is given by m(x, z) = v(x, z) + 1

Rx
and the equations may be rewritten as

∂tu+R(uux + wuz)−m = −qx
∂tw +R(uwx + wwz) + b = −qz
∂tm+R(umx + wmz) = 0

∂tb+R(ubx + wbz) = 0,

(48)

where q = p+ 1
2Rx

2.
The simplest configuration where inertial instability appears is a barotropic anti-

cyclonic shear with v(x, z) = − tanh(x). It was studied in [27], and we will consider
it below.

For numerical tests, we consider the equations (48) on the domain (x, z) ∈
[−4, 4]×[−1, 2], with free-slip boundary conditions and consider the same steady so-
lution as before: u(x, z) = 0, v(x, z) = − tanh(x), w(x, z) = 0, and b(x, z) = − 1

Rz,

so that p(x, z) = 1
2Rz

2 − ln(cosh(x)). We disturb this state by a localized pertur-
bation of b given by

b̃(x, z) =

{
βx exp

(
−r20
r20−r2

)
if r < r0

0 if r > r0,

with r0 = 0.2, and r2 = x2 + (z − 0.5)2. Our variational integrator (42) was
implemented on a 32× 32 grid from t = 0 to t = 12 with dt = 0.04. We performed
simulations with the following values: R = 1/2, R = 1, R = 2, R = 3 and β = 0.5,
β = 1, β = 2. As is easy to see the shear flow becomes inertially unstable at R > 1.
We give a comparison of the simulation of a stable flow with R = 1 and β = 1 and
unstable flow with R = 2 and β = 0.5 (a lesser value of β is taken in this case to
prevent a too rapid evolution of the instability). The snapshots of the buoyancy
field b presented in Fig. 12 for the inertially stable configuration clearly illustrate
how the perturbation provokes oscillations and emission of inertia-gravity waves,
without reorganization of the mean flow.

The snapshots of the evolution of the buoyancy field in the simulation of the
inertially unstable configuration presented in Fig. 13 clearly show the development
of the instability, with a formation of “drops” of buoyancy anomalies with associated
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Figure 12. Evolution of the buoyancy field with superimposed
velocity in the inertially stable case R = 1. Emission of inertia-
gravity waves due to initial perturbation is clearly seen. The cor-
responding animation may be viewed at http://www.geometry.

caltech.edu/Movies/BoussinesqAIMS/both4_5R1beta1b.avi

vorticity ejected out of the flow in accordance with the convective character of the
inertial instability.

http://www.geometry.caltech.edu/Movies/BoussinesqAIMS/both4_5R1beta1b.avi
http://www.geometry.caltech.edu/Movies/BoussinesqAIMS/both4_5R1beta1b.avi
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Figure 13. Evolution of the buoyancy field (colours) with
superimposed velocity in the inertially unstable case R =
2. Only the part of the calculational domain around ini-
tial perturbation is displayed. The corresponding animation
may be viewed at http://www.geometry.caltech.edu/Movies/

BoussinesqAIMS/both4_5R2beta05b.avi

This behavior is consistent with the Lagrangian picture of the inertial instability
[15] and with the evolution of the periodic perturbations considered in [27]. As
seen from the evolution of the geostrophic momentum, this evolution leads to a
considerable reorganization of the mean flow, with eventual homogenization of the
geostrophic momentum at the location of the perturbation. This is fully consis-
tent with the general scenario of the evolution of inertial instability [20], yet the
dissipationless character of the code allows to capture fine details smeared by the
dissipation in the existing simulations of the saturation of the inertial instability.

The energy evolution of the system is presented in Fig. 15. As indicated by this
figure, the energy is nearly perfectly conserved.

6.4. Conclusions. Our numerical tests showed feasibility of efficient numerical
implementation of the structure-preserving symplectic integrators for Boussinesq
equations of rotating stratified fluids. The slow and the fast components of the flow
were correctly reproduced in spite of relatively low resolution; the waves were well
simulated, their characteristic properties correctly recovered; and the conservation
laws were perfectly verified, with long-term energy conservation. The hard test of
inertial instability showed agreement with common knowledge of the instability. As
future work, one may want to leverage upwinding techniques to remove numerical
artifacts near sharp gradients of buyoancy without interfering with the structure
preservation of our update equations.
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Figure 14. Geostrophic momentum (colours) with superim-
posed velocity in the inertially unstable case R = 2.
Only the part of the calculational domain around initial
perturbation is displayed. The corresponding animation
may be viewed at http://www.geometry.caltech.edu/Movies/

BoussinesqAIMS/both4_5R2beta05M.avi
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Figure 15. Energy behavior in the simulation of the inertially
unstable case R = 2.
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