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Abstract. A widely used approximation of the Gaussian curvature on a triangulated surface
is the angle defect, which measures the deviation between 2π and the sum of the angles between
neighboring edges emanating from a common vertex. We show that the linearization of the angle
defect about an arbitrary piecewise constant Regge metric is related to the classical Hellan-Herrmann-
Johnson finite element discretization of the div div operator. Integrating this relation leads to an
integral formula for the angle defect which is well-suited for analysis and generalizes naturally to
higher order. We prove error estimates for these high-order approximations of the Gaussian curvature
in Hk-Sobolev norms of integer order k ≥ −1.
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1. Introduction. One of the most widely used approximations of the Gaussian
curvature on a triangulated surface is the angle defect: 2π minus the sum of the
angles between neighboring edges emanating from a common vertex. This approxi-
mation (and its generalization to higher dimensions) is used in several applications,
including discrete analogues of Ricci flow [12, 23], discrete theories of relativity [27, 1],
discrete differential geometry [21, 30], and computer graphics algorithms [24, 15, 29].
Despite its widespread use, the angle defect leaves much to be desired if one is in-
terested in accurately approximating the curvature of a smooth surface (or smooth
Riemannian manifold) with a discretization thereof. It is manifestly a low-order ap-
proximation of the curvature, relying in essence on piecewise constant approximations
of the underlying smooth metric tensor.

In this paper, we introduce and analyze a family of high-order approximations
of the Gaussian curvature using piecewise polynomial approximations of the metric
tensor. The cornerstone of our construction is an integral formula for the angle defect
that mimics a certain integral formula for the Gaussian curvature which is valid in the
smooth setting. In the discrete setting, the integral formula follows from the observa-
tion that the linearization of the angle defect about an arbitrary piecewise constant
metric (more precisely, a piecewise constant Regge metric) is related to the classical
Hellan-Herrmann-Johnson finite element discretization of the div div operator. This
observation generalizes one made by Christiansen [13], who derived the linearization
of the angle defect about the Euclidean metric and related it to the jumps in the
tangential-normal components of the metric perturbation (see Remark 3.4 for more
details).

To generalize the angle defect to higher order, we rely on the Regge finite element
spaces recently developed by Li [26], which have their origins in the work of Chris-
tiansen [13]. These finite element spaces consist of piecewise polynomial (0, 2)-tensor
fields with continuous tangential-tangential components across element interfaces. In
the lowest order setting, a positive definite Regge finite element realizes a piecewise
flat triangulation whose (squared) edge lengths correspond to the degrees of freedom
for the finite element space.
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(a) (b) r = 0 (c) r = 1 (d) r = 2

Fig. 1.1. Approximate Gaussian curvature of the metric (1.1), computed using piecewise poly-
nomial approximations of g of degree r = 0, 1, 2 on the triangulation of (−1, 1)× (−1, 1) depicted in
(a).

The advantages of high-order approximation of the Gaussian curvature are easily
illustrated with an example. Consider the square Ω = (−1, 1)× (−1, 1) equipped with
the Riemannian metric

(1.1) g(x, y) =

1 +
(
∂f
∂x

)2
∂f
∂x

∂f
∂y

∂f
∂x

∂f
∂y 1 +

(
∂f
∂y

)2

 ,

where f(x, y) = 1
2x

2 − 1
12x

4 + 1
2y

2 − 1
12y

4. This is nothing more than the induced
metric for the surface z = f(x, y) in R3. The exact Gaussian curvature of g is

κ(g)(x, y) =
81(1− x2)(1− y2)

(9 + x2(x2 − 3)2 + y2(y2 − 3)2)
2 .

Figure 1.1 plots the approximate Gaussian curvature of g, as computed using Defini-
tion 3.1 below with piecewise polynomial approximations of g of degree r = 0, 1, 2 on
the triangulation of Ω depicted in Figure 1.1a. As we will show later in this paper,
the approximate curvature produced by Definition 3.1 in the case r = 0 is precisely
the angle defect, normalized by the consistent mass matrix for piecewise linear finite
elements. (In the interest of fairness, we normalized by a lumped mass matrix to
produce Figure 1.1b; the appearance of Figure 1.1b worsens if the consistent mass
matrix is used.) Notice that the results for r = 0 and r = 1 are not particularly
satisfactory. This should come as no surprise; one expects the second derivatives of a
degree-r polynomial approximation of g to converge in W r−2,p-Sobolev norms under
mesh refinement, but not in stronger norms. A chief goal of this paper is to verify
this intuition with an error estimate.

Our error analysis complements a number of related results in the literature on
scalar curvature approximation. Cheeger, Müller, and Schrader [10] prove that the
angle defect converges in the sense of measures to the (densitized) scalar curvature
if a smooth Riemannian manifold (not necessarily of dimension 2) is approximated
with a suitable sequence of triangulations. Christiansen [14] proves a dual result: if a
piecewise constant metric is approximated with a sequence of mollifications thereof,
then the exact (densitized) scalar curvature of the mollified metric converges in the
sense of measures to the angle defect. Other analyses of the angle defect appear
in [5, 31] and the references therein; many of these analyses are guided by Taylor ex-
pansions on parametrized surfaces and impose special conditions on the triangulation.
Our error analysis will focus not on the angle defect but instead on its higher order
generalizations.
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There appear to be relatively few studies on Gaussian curvature approximation
that offer quantitative error bounds in Sobolev norms like the bounds in Theorem 4.1
below. Fritz [19] has proven bounds of this type for a curvature approximation which
uses isoparametric approximations of surfaces embedded in R3. His results apply
more generally to Ricci tensor approximation on hypersurfaces, and have been used
to discretize Ricci flow [20]. However, they are inapplicable if the manifold does not
admit a codimension-one embedding into Euclidean space. Note that studies related to
mean curvature approximation are more widespread; see, for instance, [22, 4, 16, 25].

This paper is organized as follows. In Section 2, we introduce our notation and
point out an integral formula for the Gaussian curvature. In Section 3, we discretize
this integral formula with the aid of Regge finite elements, and we show that it reduces
to the angle defect in the lowest-order setting. We state and prove error estimates for
the aforementioned discretization in Section 4. We conclude with numerical examples
in Section 5.

For simplicity, we perform much of the forthcoming analysis on a triangulated
polygonal domain in R2 equipped with a non-Euclidean metric. Note, however, that
the curvature approximations we introduce are coordinate-free and can be readily ap-
plied to two-dimensional orientable simplicial complexes with more general topology.
We refer the reader to [26] for the appropriate definitions of the Regge finite elements
in this general setting. Importantly, our curvature approximations do not rely on (nor
assume the existence of) an embedding of the manifold under consideration in R3.

2. Curvature in the Smooth Setting.

2.1. Preliminaries. Let Ω ⊂ R2 be a polygonal domain. We use standard nota-
tion for the Sobolev spaces W s,p(Ω) of differentiability index s ∈ R and integrability
index p ∈ [1,∞]. We denote Hs(Ω) = W s,2(Ω) and H1

0 (Ω) = {v ∈ H1(Ω) | v|∂Ω = 0}.
Let g be a smooth Riemannian metric on Ω. Fix coordinates (x1, x2) on R2 so

that g may be regarded as a map from Ω to S = {σ ∈ R2×2 | σ = σT }. If v is a scalar

field on Ω, then we denote ∇v =
(
∂v
∂x1 ,

∂v
∂x2

)T
and ∇gv = g−1∇v. If w is a vector

field on Ω, then we regard it as a column vector and denote divw = ∂w1

∂x1 + ∂w2

∂x2 and
divg w = 1√

det g
div(
√

det g w).

The Riemannian Hessian of a scalar field v is denoted Hessg v. In coordinates,

(Hessg v)ij =
∂2v

∂xi∂xj
− Γkij

∂v

∂xk
.

Here, the Einstein summation convention is adopted, and Γkij are the Christoffel sym-
bols of the second kind. That is,

Γkij =
1

2
gk`
(
∂g`i
∂xj

+
∂g`j
∂xi
− ∂gij
∂x`

)
,

where gij denotes the (i, j)-component of g, and gij denotes the (i, j)-component of
g−1. The Laplacian of v is

∆gv = divg∇gv.

If σ is a symmetric (0, 2)-tensor field on Ω, then we regard it as a map from Ω to S
and denote its components by σij . In a slight abuse of notation, we denote by divg σ
the vector field with components

(divg σ)i =
∂σij

∂xj
+ Γijkσ

kj + Γjjkσ
ik,
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where σij = gikσk`g
`j . We omit the subscript g if g is the Euclidean metric δ ≡ ( 1 0

0 1 ).
Thus, div σ = divδ σ, ∆v = ∆δv, etc.

The Gaussian curvature of g is denoted κ(g); it is half the scalar curvature R(g):

κ(g) =
1

2
R(g) =

1

2
gij

(
∂Γkij
∂xk

− ∂Γkik
∂xj

+ Γ`ijΓ
k
k` − Γ`ikΓkj`

)
.

Because Ω is two-dimensional, the Ricci tensor Ric(g) is proportional to the metric:

(2.1) Ric(g) = κ(g)g.

2.2. Linearization of the Curvature. Let µ(g) =
√

det g dx be the volume
form on Ω induced by g. The linearization of (κµ)(g) = κ(g)µ(g) about g will be of
fundamental importance in this paper. For any smooth σ : Ω→ S, we have

(2.2) D(κµ)(g) · σ =
1

2
(divg divg Sgσ)µ(g),

where

(2.3) Sgσ = σ − gTr(g−1σ).

This can be seen by combining the well-known relations ([18, Lemma 2], [11, Equation
2.11])

Dκ(g) · σ =
1

2

(
divg divg σ −∆g Tr(g−1σ)− Tr(g−1σg−1 Ric(g))

)
,

Dµ(g) · σ =
1

2
Tr(g−1σ)µ(g),

with (2.1), noting that divg divg(gv) = ∆gv for any scalar field v.
Another way of writing (2.2) is as follows. Let

〈u, v〉g =

∫
Ω

uv µ(g)

be the L2-inner product on Ω induced by g. Then, for any scalar function v,

(2.4)
d

dt

∣∣∣∣
t=0

〈κ(g + tσ), v〉g+tσ =
1

2
〈divg divg Sgσ, v〉g.

Since the Euclidean metric δ has zero curvature, integrating the above relation leads
to the integral formula

(2.5) 〈κ(g), v〉g =
1

2

∫ 1

0

b((1− t)δ + tg; g − δ, v) dt,

where

(2.6) b(g;σ, v) = 〈divg divg Sgσ, v〉g.

Our strategy for discretizing κ(g) will be to discretize the integral formula (2.5).
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3. Discretization. Let {Th}h>0 be a shape-regular, quasi-uniform family of tri-
angulations of Ω parametrized by h = maxK∈Th hK , where hK = diam(K) denotes
the diameter of a triangle K. In other words, there are constants C1 and C2 such
that for every h,

max
K∈Th

hK
ρK
≤ C1,(3.1)

max
K∈Th

h

hK
≤ C2,(3.2)

where ρK denotes the inradius of K.
Let e ⊂ ∂K be an edge of a triangle K ∈ Th. The outward unit normal vector to

K along e relative to the Euclidean metric is denoted n, and the unit tangent vector
relative to the Euclidean metric is τ = −Jn, where J =

(
0 1
−1 0

)
. Relative to g, the

unit tangent and normal vectors are

τg =
1√
τT gτ

τ, ng =
Jgτ√

τT gτ
√

det g
.

One checks that τTg gτg = nTg gng = 1 and τTg gng = 0 since gJg = (det g)J . We also
note that if σ : Ω→ S, then

(3.3) nTg (Sgσ)ng = −τTg στg,

owing to the definition (2.3) of Sg and the identity τgτ
T
g + ngn

T
g = g−1. Indeed,

nTg (Sgσ)ng = nTg σng − nTg gng Tr(g−1σ) = nTg σng − Tr((τgτ
T
g + ngn

T
g )σ) = −τTg στg.

Let Eh denote the set of edges of triangles in Th, and let E̊h denote the set of
interior edges; these are the edges e ∈ Eh with e 6⊂ ∂Ω. Let v be a scalar field. Along
any edge e = K1 ∩K2 ∈ E̊h, we denote

JvK = v|∂K1
+ v|∂K2

.

If e ∈ Eh is on the boundary of Ω, we denote

JvK = v|∂Ω .

Let
V = {v ∈ H1

0 (Ω) | v|K ∈ H
2(K), ∀K ∈ Th}

and

Σ = {σ ∈ L2(Ω)⊗ S | σ|K ∈ H
1(K)⊗ S, ∀K ∈ Th, and

τTστ is continuous across every e ∈ E̊h}.

Note that V and Σ depend on h, but we have omitted a subscript h to emphasize
that they are infinite-dimensional spaces. We define a metric-dependent bilinear form
bh(g; ·, ·) : Σ× V → R by

bh(g;σ, v) =
∑
K∈Th

〈Sgσ,Hessg v〉g,K +
∑
e∈Eh

〈
τTg στg,

s
∂v

∂ng

{〉
g,e

,



6 E. S. GAWLIK

where

〈u, v〉g,e =

∫
e

uv
√
τT gτ d`,

〈σ, ρ〉g,K =

∫
K

Tr(g−1σg−1ρ)µ(g),

and
∂v

∂ng
= nTg g∇gv.

The bilinear form bh is a consistent discretization of the bilinear form b defined in (2.6).
This can be shown via integration by parts; see Lemma 4.3. In view of (3.3), bh is
(up to the appearance of Sg) a non-Euclidean generalization of the bilinear form used
to discretize the div div operator in the classical Hellan-Herrmann-Johnson mixed
discretization of the biharmonic equation [3, 2, 9, 6, 7]. See [26, Section 4.2] for more
insight into this connection in the Euclidean setting.

Now let q ∈ N and r ∈ N0, and define finite-dimensional subspaces

(3.4) Vh = {v ∈ V | v|K ∈ Pq(K), ∀K ∈ Th}

and

(3.5) Σh = {σ ∈ Σ | σ|K ∈ Pr(K)⊗ S, ∀K ∈ Th},

where Pr(K) denotes the space of polynomials of degree≤ r onK. The space Σh is the
space of Regge finite elements of degree r [26, 13]. There is a bijective correspondence
between Σh and the space of symmetric tensor fields used in the Hellan-Herrmann-
Johnson method; every σ ∈ Σh is the image under Sδ of a piecewise polynomial
symmetric tensor field with normal-normal continuity across element interfaces [26,
pp. 95-96].

Of particular importance to us will be the space of positive definite Regge finite
elements,

Σh+ = {σ ∈ Σh | σ(x) � 0, ∀x ∈ K̊, ∀K ∈ Th}.
We define the discrete Gaussian curvature of a metric gh ∈ Σh+ as follows.

Definition 3.1. Let q ∈ N, r ∈ N0, and gh ∈ Σh+. The discrete Gaussian
curvature of gh is the unique function κh(gh) ∈ Vh satisfying

(3.6) 〈κh(gh), vh〉gh =
1

2

∫ 1

0

bh((1− t)δ + tgh; gh − δ, vh) dt, ∀vh ∈ Vh.

Note that for each vh ∈ Vh, the value of 〈κh(gh), vh〉gh depends only on the values
of gh in supp(vh). Thus, Definition 3.1 extends readily to orientable triangulations
with more general topology: for each function vh in the canonical basis for Vh, one
computes the spatial integral in (3.6) over supp(vh), which (generically) is a patch of
triangles admitting a Euclidean metric.

One of our main reasons for favoring this definition is that when (r, q) = (0, 1),
κh(gh) reduces to the popular angle defect. In detail, let {y(i)}Ni=1 ⊂ Ω be the vertices
of Th, enumerated in such a way that y(i) /∈ ∂Ω if and only if 1 ≤ i ≤ N0 < N . Let
{φi}N0

i=1 be the basis for Vh defined by

φi(y
(j)) =

{
1, if i = j,

0, if i 6= j,
i = 1, 2, . . . , N0, j = 1, 2, . . . , N.
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The set {φi}N0
i=1 is the standard basis for piecewise linear Lagrange finite elements on

Th.

Theorem 3.2. Let r = 0, q = 1, and gh ∈ Σh+. For every i = 1, 2, . . . , N0, we
have

〈κh(gh), φi〉gh = 2π −
∑
K∈ωi

θiK ,

where ωi is the set of triangles in Th sharing vertex i, and θiK is the interior angle of
K at vertex i as measured by gh.

The preceding theorem is a consequence of the following identity that mim-
ics (2.4).

Lemma 3.3. Let r = 0, q = 1, gh ∈ Σh+, σh ∈ Σh, and i ∈ {1, 2, . . . , N0}. For
each K ∈ ωi and t sufficiently small, let θiK(t) be the interior angle of K at vertex i
as measured by gh + tσh. Then

(3.7)
d

dt

∣∣∣∣
t=0

(
2π −

∑
K∈ωi

θiK(t)

)
=

1

2
bh(gh;σh, φi).

Proof. Let K ∈ ωi be a triangle with edges ea, eb, and ec of length a(t), b(t), and
c(t) relative to gh + tσh. Assume that ec is opposite the angle θiK(t). Differentiating
the law of cosines

a(t)2 + b(t)2 − c(t)2 = 2a(t)b(t) cos θiK(t)

with respect to t at t = 0 and solving for θ̇iK = θ̇iK(0) gives

θ̇iK =
−ȧ(a− b cos θiK)− ḃ(b− a cos θiK) + ċc

2A
,

where A = 1
2ab sin θiK is the area of K relative to gh and a = a(0), ȧ = ȧ(0), etc. On

the other hand, we have

(3.8)
∂φi
∂ngh

∣∣∣∣
ea

=
a− b cos θiK

2A
,

∂φi
∂ngh

∣∣∣∣
eb

=
b− a cos θiK

2A
,

∂φi
∂ngh

∣∣∣∣
ec

= − c

2A
,

and

(3.9) 〈τTghσhτgh , 1〉gh,ea = 2ȧ, 〈τTghσhτgh , 1〉gh,eb = 2ḃ, 〈τTghσhτgh , 1〉gh,ec = 2ċ.

Indeed, the relations in (3.8) follow from the fact that relative to gh, ∇ghφi is a vector
of length c

2A that is perpendicular to the edge ec. The relations in (3.9) follow from
differentiating the identity

〈τTgh(gh + tσh)τgh , 1〉gh,ea =

〈
1

τT ghτ
τT (gh + tσh)τ, 1

〉
gh,ea

=

∫
ea

τT (gh + tσh)τ√
τT ghτ

d`

=
a(t)2

a(0)
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and its counterpart for the edges eb and ec. Summing over all K ∈ ωi and noting that
φi = 0 on each K /∈ ωi, we conclude that

(3.10) −
∑
K∈ωi

θ̇iK =
1

2

∑
e∈Eh

〈
τghσhτgh ,

s
∂φi
∂ngh

{〉
gh,e

.

Since Hessgh φi vanishes on each K ∈ Th, the relation (3.7) follows.

Remark 3.4. Let us clarify the distinction between the preceding lemma and the
results of Christiansen [13]. Christiansen works in three dimensions and computes the
first- and second-order variation of the Regge action

∑
e `eκe (κe being the angle defect

at an edge e, and `e being its length) around the Euclidean metric. He notes that
the first variation vanishes (a fact proven by Regge [27]), while the second variation
is related to the distributional curlT curl operator (which coincides with the operator
−div divSδ in two dimensions). Along the way, he relates the linearization of κe
around the Euclidean metric to a summation of jumps of τTσn (see [13, Proposition
2]). With some manipulation, this relation can be restated in the form of Lemma 3.3
with gh = δ. Note that the case gh 6= δ is not addressed in [13]; this missing ingredient
plays a crucial role in our work.

4. Error Estimates. In this section, we prove error estimates for κh(gh)−κ(g)
in Hk-Sobolev norms of integer order k ≥ −1.

Denote

‖v‖2L2(Ω,g) = 〈v, v〉g =

∫
Ω

v2
√

det g dx,

|v|2H1(Ω,g) =

∫
Ω

∇gvT g∇gv
√

det g dx =

∫
Ω

∇vT g−1∇v
√

det g dx,

and ‖v‖2H1(Ω,g)= ‖v‖
2
L2(Ω,g)+|v|

2
H1(Ω,g). Also let

(4.1) ‖v‖H−1(Ω,g)= sup
u∈H1

0 (Ω)

〈v, u〉g
‖u‖H1(Ω)

.

Note that if the eigenvalues of g are bounded above and below by positive con-
stants on Ω, then the norms ‖v‖L2(Ω,g) and ‖v‖H1(Ω,g) are equivalent to the norms
‖v‖L2(Ω) and ‖v‖H1(Ω), respectively. These facts imply that (4.1) is equivalent to the
norm obtained by replacing ‖u‖H1(Ω) with ‖u‖H1(Ω,g) in the denominator of (4.1).

Our analysis will make use of the broken Sobolev norms

‖v‖W s,p
h (Ω)=

( ∑
K∈Th

‖v‖pW s,p(K)

)1/p

,

with the obvious modifications for p = ∞. We denote ‖·‖Hs
h(Ω)= ‖·‖W s,2

h (Ω), and we

use analogous notation |·|W s,p
h (Ω) and |·|Hs

h(Ω) for the corresponding broken Sobolev
semi-norms.

For p ∈ [1,∞] and s > 2/p, we denote

Ms,p(Ω) = {g ∈W s,p(Ω)⊗ S | g(x) � 0, ∀x ∈ Ω}.

Note that the condition g(x) � 0 is meaningful for s > 2/p, since the Sobolev embed-
ding theorem implies that elements of W s,p(Ω) with s > 2/p are continuous on Ω. It
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is known that for p ∈ (1,∞) and s > 2/p+1, the curvature operator κ mapsMs,p(Ω)
into W s−2,p(Ω) [18, Lemma 1].

The following theorem summarizes our estimates for κh(gh)− κ(g). We split the
estimates into two parts: estimates in H−1(Ω, g) and L2(Ω), and estimates in Hk

h(Ω)
with k ≥ 1. The theorem references the integers r and q that parametrize the spaces
Σh and Vh, respectively; recall (3.4) and (3.5).

Theorem 4.1. Let g ∈ M2,∞(Ω). Suppose that {gh ∈ Σh}h>0 is a sequence
satisfying limh→0‖gh − g‖L∞(Ω)= 0, limh→0 h

−1 log h−1‖gh − g‖L2(Ω)= 0, and C0 :=
suph>0‖gh‖W 1,∞

h (Ω)<∞. Then there exists a constant C depending on Ω, ‖g‖W 1,∞(Ω),

‖g−1‖L∞(Ω), ‖κ(g)‖L2(Ω), r, q, C0, and the shape regularity and quasi-uniformity
constants C1 and C2 such that for every h sufficiently small,

h−1‖κh(gh)− κ(g)‖H−1(Ω,g)+‖κh(gh)− κ(g)‖L2(Ω)

≤ C
(
h−2‖gh − g‖L2(Ω)+h

−1|gh − g|H1
h(Ω)+ inf

uh∈Vh

‖κ(g)− uh‖L2(Ω)

)
.

(4.2)

Furthermore, if κ(g) ∈ Hm(Ω)∩H1
0 (Ω) with m ∈ N, then for each k = 1, 2, . . . , q and

each ` = k, k + 1, . . . ,min{q + 1,m},
(4.3)

hk|κh(gh)− κ(g)|Hk
h(Ω)≤ C

(
h−2‖gh − g‖L2(Ω)+h

−1|gh − g|H1
h(Ω)+h

`|κ(g)|H`(Ω)

)
for every h sufficiently small.

Note that the theorem is vacuous when r = 0, since we generally cannot expect
‖gh−g‖L2(Ω) to decay faster than O(hr+1). This is consistent with known convergence
results for the angle defect (the case r = 0, q = 1), which hold in a norm that is
weaker than the H−1(Ω, g)-norm [10, Theorem 5.1]. It should also be noted that
the assumptions in the theorem statement guarantee that gh ∈ Σh+ for h sufficiently
small, so that κh(gh) is well-defined. See Section 4.2 for more details.

Our proof will be structured as follows. First, we verify in Lemma 4.4 that the
exact Gaussian curvature satisfies

〈κ(g), v〉g =
1

2

∫ 1

0

bh((1− t)δ + tg; g − δ, v) dt

for every v ∈ V . Next, we consider an arbitrary v ∈ H1
0 (Ω) and write

〈κh(gh)− κ(g), v〉g = (〈κh(gh), vh〉gh − 〈κ(g), vh〉g)
+ 〈κh(gh)− κ(g), v − vh〉g(4.4)

+ (〈κh(gh), vh〉g − 〈κh(gh), vh〉gh),

with vh ∈ Vh. The three terms above are estimated in Propositions 4.8, 4.9, and 4.10.
Combining them will lead to Theorem 4.1.

4.1. Consistency of bh. We begin by recalling two integration-by-parts formu-
las.

Lemma 4.2. Let K ∈ Th. For every v ∈ H1(K) and every w ∈ H1(K)⊗ R2, we
have

(4.5)

∫
K

wT g∇gv
√

det g dx =

∫
∂K

wT gngv
√
τT gτ d`−

∫
K

(divg w)v
√

det g dx.
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In addition, for every v ∈ H2(K) and every σ ∈ H1(K)⊗ S, we have∫
K

(divg σ)T g∇gv
√

det g dx =

∫
∂K

nTg σ∇gv
√
τT gτ d`

−
∫
K

Tr(g−1σg−1 Hessg v)
√

det g dx.

(4.6)

Proof. The (Euclidean) divergence theorem gives∫
K

wT g∇gv
√

det g dx =

∫
K

wT∇v
√

det g dx

=

∫
∂K

wTnv
√

det g d`−
∫
K

div(w
√

det g)v dx

=

∫
∂K

wT gngv
√
τT gτ d`−

∫
K

(divg w)v
√

det g dx,

where we have used the fact that

(4.7) gng =
gJgτ√

τT gτ
√

det g
=

√
det g Jτ√
τT gτ

=

√
det g n√
τT gτ

.

To prove (4.6), note first that

(4.8) (divg σ)T g∇gv = divg(g
−1σ∇gv)− Tr(g−1σg−1 Hessg v),

which can be verified by expanding both sides in coordinates. The formula (4.6) now
follows from the observation that∫

K

divg(g
−1σ∇gv)

√
det g dx =

∫
K

div(g−1σ∇gv
√

det g) dx

=

∫
∂K

nT g−1σ∇gv
√

det g d`

=

∫
∂K

nTg σ∇gv
√
τT gτ d`,

where we have used (4.7) again.

Lemma 4.3. For every σ ∈ H2(Ω)⊗ S and every v ∈ V ,

bh(g;σ, v) = 〈divg divg Sgσ, v〉g.

Proof. Let σ̃ = Sgσ. Recalling that τTg στg = −nTg σ̃ng, we have

bh(g;σ, v) =
∑
K∈Th

(∫
K

Tr(g−1σ̃g−1 Hessg v)
√

det g dx−
∫
∂K

nTg σ̃ngn
T
g g∇gv

√
τT gτ d`

)
=
∑
K∈Th

(∫
∂K

nTg σ̃∇gv
√
τT gτ d`−

∫
K

(divg σ̃)T g∇gv
√

det g dx

−
∫
∂K

nTg σ̃ngn
T
g g∇gv

√
τT gτ d`

)
.

Using the fact that τgτ
T
g + ngn

T
g = g−1, the first and third terms can be combined to

give

bh(g;σ, v) =
∑
K∈Th

(∫
∂K

nTg σ̃τgτ
T
g g∇gv

√
τT gτ d`−

∫
K

(divg σ̃)T g∇gv
√

det g dx

)
.
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Integrating the second term by parts, we obtain

bh(g;σ, v) =
∑
K∈Th

(∫
∂K

nTg σ̃τgτ
T
g g∇gv

√
τT gτ d`−

∫
∂K

(divg σ̃)T gngv
√
τT gτ d`

+

∫
K

(divg divg σ̃)v
√

det g dx

)
=
∑
e∈Eh

∫
e

JnTg σ̃τgτ
T
g g∇gvK

√
τT gτ d`−

∑
e∈Eh

∫
e

J(divg σ̃)T gngvK
√
τT gτ d`

+

∫
Ω

(divg divg σ̃)v
√

det g dx.(4.9)

Since v ∈ V , both v and its tangential derivative are continuous across element in-
terfaces, and they vanish on ∂Ω. In particular, JτTg g∇gvK = JτT∇v/

√
τT gτK = 0

for every e ∈ Eh. On the other hand, since σ̃ ∈ H2(Ω) ⊗ S, nTg σ̃τg is continuous

across element interfaces, and J(divg σ̃)T gngK = 0 for every e ∈ E̊h. It follows that the
summations over e ∈ Eh in (4.9) vanish. Thus,

bh(g;σ, v) =

∫
Ω

(divg divg σ̃)v
√

det g dx.

Lemma 4.4. For every v ∈ V ,

〈κ(g), v〉g =
1

2

∫ 1

0

bh((1− t)δ + tg; g − δ, v) dt.

Proof. Let G(t) = (1− t)δ + tg and σ = g − δ. From (2.4), we obtain

d

dt
〈κ(G(t)), v〉G(t) =

1

2
〈divG(t) divG(t) SG(t)σ, v〉G(t)

=
1

2
bh(G(t);σ, v),

so

〈κ(g), v〉g = 〈κ(δ), v〉δ +
1

2

∫ 1

0

bh(G(t);σ, v) dt

=
1

2

∫ 1

0

bh(G(t);σ, v) dt.

4.2. Basic Estimates. We now collect a few basic estimates in preparation for
our estimation of 〈κh(gh)− κ(g), v〉g.

Throughout what follows, we make use of the fact that the eigenvalues of g, being
positive and continuous on Ω, are bounded above and below by positive constants C3

and C4 that depend on ‖g‖L∞(Ω) and ‖g−1‖L∞(Ω). Hence, for any w ∈ R2, we have

(4.10) C3w
Tw ≤ wT g(x)w ≤ C4w

Tw, ∀x ∈ Ω.

It follows also that ‖
√

det g‖L∞(Ω) and ‖1/
√

det g‖L∞(Ω) are each bounded above
by constants depending on ‖g‖L∞(Ω) and ‖g−1‖L∞(Ω). Differentiation then reveals
that ‖

√
det g‖W 1,∞(Ω) and ‖1/

√
det g‖W 1,∞(Ω) are each bounded above by constants

depending on ‖g‖W 1,∞(Ω) and ‖g−1‖L∞(Ω).
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We will use this information to establish analogous estimates for gh, under the
assumption that C0 := suph>0‖gh‖W 1,∞

h
<∞ and limh→0‖gh−g‖L∞(Ω)= 0. From this

point forward, we use the letter C to denote a constant which is not necessarily the
same at each occurrence and may depend on Ω, ‖g‖W 1,∞(Ω), ‖g−1‖L∞(Ω), ‖κ(g)‖L2(Ω),
r, q, C0, and the shape regularity and quasi-uniformity constants C1 and C2, but not
on h.

Lemma 4.5. Let p ∈ [1,∞]. For every h sufficiently small,

‖g−1
h − g

−1‖Lp(Ω)≤ C‖gh − g‖Lp(Ω)

Proof. The identity

(g−1
h − g

−1)(δ − (g − gh)g−1) = g−1(g − gh)g−1

shows that for h sufficiently small,

g−1
h − g

−1 = g−1(g − gh)g−1(δ − (g − gh)g−1)−1.

Thus, for every K ∈ Th and every x ∈ K̊, the operator norm of gh(x)−1 − g(x)−1

satisfies

‖gh(x)−1 − g(x)−1‖≤ ‖g
−1(x)(g(x)− gh(x))g(x)−1‖

1− ‖(g(x)− gh(x))g(x)−1‖
.

It follows that

‖g−1
h − g

−1‖Lp(Ω)≤
‖g−1‖2L∞(Ω)‖g − gh‖Lp(Ω)

1− ‖g − gh‖L∞(Ω)‖g−1‖L∞(Ω)

for h sufficiently small. Taking h small enough so that (say) ‖g−gh‖L∞(Ω)≤ 1
2‖g−1‖L∞(Ω)

completes the proof.

From the above lemma and the assumption that suph>0‖gh‖W 1,∞
h

< ∞, we con-

clude that for h sufficiently small,

‖gh‖W 1,∞
h (Ω)+‖g

−1
h ‖L∞(Ω)≤ C.

In particular, the eigenvalues of gh are bounded above and below by positive constants
independent of h, and estimates of the form

C−1wTw ≤ wT gh(x)w ≤ CwTw, ∀x ∈ K̊, ∀K ∈ Th, ∀w ∈ R2,

and
‖
√

det gh‖L∞(Ω)+‖1/
√

det gh‖L∞(Ω)≤ C

hold for h sufficiently small. In the remainder of this section, we will tacitly assume
that h is small enough that the preceding estimates hold.

Lemma 4.6. For every k ∈ {0, 1} and p ∈ [1,∞],

‖
√

det g −
√

det gh‖Wk,p
h (Ω)≤ C‖gh − g‖Wk,p

h (Ω).

Proof. Let g =
(
a b
c d

)
and gh =

(
ah bh
ch dh

)
. The identity

det gh − det g = (ah − a)dh + a(dh − d)− (bh − b)ch − b(ch − c)
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shows that
‖det g − det gh‖Lp(Ω)≤ C‖gh − g‖Lp(Ω),

and the identity √
det g −

√
det gh =

det g − det gh√
det g +

√
det gh

shows that

(4.11) ‖
√

det g −
√

det gh‖Lp(Ω)≤ C‖det g − det gh‖Lp(Ω)≤ C‖gh − g‖Lp(Ω).

To obtain the W 1,p
h (Ω) estimate, we compute

∂

∂xi

√
det g =

1

2
Tr

(
g−1 ∂g

∂xi

)√
det g,

which gives

∂

∂xi
(
√

det g −
√

det gh) =
1

2
Tr

((
g−1 − g−1

h

) ∂g
∂xi

)√
det g

+
1

2
Tr

(
g−1
h

(
∂g

∂xi
− ∂gh
∂xi

))√
det g

+
1

2
Tr

(
g−1
h

∂gh
∂xi

)
(
√

det g −
√

det gh).

From this, (4.11), and Lemma 4.5, we conclude that

|
√

det g −
√

det gh|W 1,p
h (Ω) ≤ C

(
‖g−1 − g−1

h ‖Lp(Ω)+|g − gh|W 1,p
h (Ω)

+ ‖
√

det g −
√

det gh‖Lp(Ω)

)
≤ C‖g − gh‖W 1,p

h (Ω).

4.2.1. The L2(Ω, g)-Orthogonal Projector. Let Ph : L2(Ω)→ Vh denote the
L2(Ω, g)-orthogonal projector onto Vh, so that

〈Phu− u,wh〉g = 0, ∀u ∈ L2(Ω), ∀wh ∈ Vh.

Lemma 4.7. We have

‖Phu− u‖H−1(Ω,g) ≤ Ch inf
uh∈Vh

‖uh − u‖L2(Ω), ∀u ∈ L2(Ω),(4.12)

‖Phu− u‖L2(Ω) ≤ C inf
uh∈Vh

‖uh − u‖L2(Ω), ∀u ∈ L2(Ω),(4.13)

‖Phu‖H1(Ω) ≤ C‖u‖H1(Ω), ∀u ∈ H1
0 (Ω).(4.14)

Proof. For any u ∈ L2(Ω) and any uh ∈ Vh, we have

‖Phu− u‖L2(Ω)≤ ‖Ph(u− uh)‖L2(Ω)+‖uh − u‖L2(Ω).

The equivalence of the norms ‖·‖L2(Ω,g) and ‖·‖L2(Ω) implies

‖Ph(u− uh)‖L2(Ω)≤ C‖Ph(u− uh)‖L2(Ω,g)≤ C‖u− uh‖L2(Ω,g)≤ C‖u− uh‖L2(Ω),
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so ‖Phu−u‖L2(Ω)≤ C‖uh−u‖L2(Ω). Since uh was arbitrary, (4.13) follows. It follows
also that ‖Phu−u‖L2(Ω)≤ Ch|u|H1(Ω) if u ∈ H1

0 (Ω). Now let Qh : H1(Ω)→ Vh denote
the Scott-Zhang interpolation operator [28]. Using an inverse estimate, interpolation
estimates, and the stability of Qh in H1(Ω), we obtain

‖Phu‖H1(Ω) ≤ ‖Phu−Qhu‖H1(Ω)+‖Qhu‖H1(Ω)

≤ C
(
h−1‖Phu−Qhu‖L2(Ω)+‖u‖H1(Ω)

)
≤ C

(
h−1‖Phu− u‖L2(Ω)+h

−1‖u−Qhu‖L2(Ω)+‖u‖H1(Ω)

)
≤ C‖u‖H1(Ω), ∀u ∈ H1

0 (Ω).

Finally, for any v ∈ H1
0 (Ω),

|〈Phu− u, v〉g| = |〈Phu− u, v − Phv〉g|
≤ ‖Phu− u‖L2(Ω,g)‖v − Phv‖L2(Ω,g)

≤ C‖Phu− u‖L2(Ω)‖v − Phv‖L2(Ω)

≤ C‖Phu− u‖L2(Ω)h|v|H1(Ω),

so
‖Phu− u‖H−1(Ω,g)≤ Ch‖Phu− u‖L2(Ω)≤ Ch inf

uh∈Vh

‖uh − u‖L2(Ω).

4.3. Proof of Theorem 4.1. We are now ready to estimate the three terms
in (4.4).

Proposition 4.8. If vh = Phv, then

|〈κh(gh)− κ(g), v − vh〉g|≤ Ch‖v‖H1(Ω) inf
uh∈Vh

‖κ(g)− uh‖L2(Ω).

Proof. For any uh ∈ Vh, we have

〈κh(gh)− κ(g), v − Phv〉g = 〈uh − κ(g), v − Phv〉g,

so

|〈κh(gh)− κ(g), v − Phv〉g| ≤ ‖uh − κ(g)‖H−1(Ω,g)‖v − Phv‖H1(Ω)

≤ ‖uh − κ(g)‖H−1(Ω,g)

(
‖v‖H1(Ω)+‖Phv‖H1(Ω)

)
≤ C‖uh − κ(g)‖H−1(Ω,g)‖v‖H1(Ω).

Taking uh = Phκ(g) and invoking the H−1(Ω, g)-estimate (4.12) completes the proof.

Proposition 4.9. For h sufficiently small, we have

|〈κh(gh), vh〉g − 〈κh(gh), vh〉gh |
≤ C log h−1

(
1 + h−1‖κh(gh)− κ(g)‖H−1(Ω,g)

)
‖gh − g‖L2(Ω)‖vh‖H1(Ω).

Proof. By Lemma 4.6 and the inverse estimate ‖vh‖L∞(Ω)≤ C log h−1‖vh‖H1(Ω) [8,
Lemma 4.9.2], we have

|〈κh(gh), vh〉g − 〈κh(gh), vh〉gh |

=

∣∣∣∣∫
Ω

κh(gh)vh(
√

det g −
√

det gh) dx

∣∣∣∣
≤ ‖κh(gh)‖L2(Ω)‖vh‖L∞(Ω)‖

√
det g −

√
det gh‖L2(Ω)

≤ C log h−1‖κh(gh)‖L2(Ω)‖vh‖H1(Ω)‖gh − g‖L2(Ω).(4.15)
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Now note that

‖κh(gh)‖L2(Ω) ≤ ‖κh(gh)− Phκ(g)‖L2(Ω)+‖Phκ(g)‖L2(Ω).

The second term above is bounded by a constant (a multiple of ‖κ(g)‖L2(Ω)) owing
to (4.13). For the first term, an inverse estimate gives

‖κh(gh)− Phκ(g)‖2L2(Ω) ≤ C‖κh(gh)− Phκ(g)‖2L2(Ω,g)

= C〈κh(gh)− Phκ(g), κh(gh)− Phκ(g)〉g
≤ C‖κh(gh)− Phκ(g)‖H−1(Ω,g)‖κh(gh)− Phκ(g)‖H1(Ω)

≤ Ch−1‖κh(gh)− Phκ(g)‖H−1(Ω,g)‖κh(gh)− Phκ(g)‖L2(Ω).

Thus, using the H−1(Ω, g)-estimate (4.12), we obtain

‖κh(gh)−Phκ(g)‖L2(Ω)≤ Ch−1‖κh(gh)− Phκ(g)‖H−1(Ω,g)

≤ C
(
h−1‖κh(gh)− κ(g)‖H−1(Ω,g)+h

−1‖κ(g)− Phκ(g)‖H−1(Ω,g)

)
≤ C

(
h−1‖κh(gh)− κ(g)‖H−1(Ω,g)+ inf

uh∈Vh

‖κ(g)− uh‖L2(Ω)

)
≤ C

(
h−1‖κh(gh)− κ(g)‖H−1(Ω,g)+1

)
,

for h sufficiently small, since limh→0 infuh∈Vh
‖κ(g)−uh‖L2(Ω)= 0 [17, Equation 1.99].

It follows that

‖κh(gh)‖L2(Ω)≤ C
(
h−1‖κh(gh)− κ(g)‖H−1(Ω,g)+1

)
.

Combining this with (4.15) completes the proof.

We will now estimate the first term in (4.4). We state the result below, and prove
it with a series of lemmas.

Proposition 4.10. We have

|〈κh(gh), vh〉gh − 〈κ(g), vh〉g|

≤ C
(
h−1‖gh − g‖L2(Ω)+|gh − g|H1

h(Ω)

)(
|vh|H1(Ω)+h|vh|H2

h(Ω)

)
.

To prove Proposition 4.10, let G(t) = (1− t)δ+ tg and Gh(t) = (1− t)δ+ tgh, so
that

〈κh(gh), vh〉gh − 〈κ(g), vh〉g =
1

2

∫ 1

0

bh(Gh(t); gh − δ, vh)− bh(G(t); gh − δ, vh) dt

+
1

2

∫ 1

0

bh(G(t); gh − g, vh) dt.

Note that Gh(t), being a convex combination of δ and gh, has eigenvalues bounded
above and below by positive constants independent of h (and t), and all of the esti-
mates we established for the norms of gh− g, g−1

h − g−1,
√

det gh−
√

det g, etc. carry

over easily to Gh −G, G−1
h −G−1,

√
detGh −

√
detG, etc.

Lemma 4.11. For every t ∈ [0, 1],

|bh(Gh(t); gh − δ, vh)− bh(G(t); gh − δ, vh)|

≤ C
(
h−1‖gh − g‖L2(Ω)+|gh − g|H1

h(Ω)

)(
|vh|H1(Ω)+h|vh|H2

h(Ω)

)
.
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Proof. Let σ = gh − δ. We have

bh(Gh(t);σ, vh)− bh(G(t);σ, vh) =
1

2

(∑
e∈Eh

Ae +
∑
K∈Th

BK

)
,

where

Ae =

〈
τTGh

στGh
,

s
∂vh
∂nGh

{〉
Gh,e

−
〈
τTGστG,

s
∂vh
∂nG

{〉
G,e

,

BK = 〈SGh
σ,HessGh

vh〉Gh,K − 〈SGσ,HessG vh〉G,K .

Along any edge e ∈ Eh, we may write〈
τTGστG,

s
∂vh
∂nG

{〉
G,e

=

∫
e

τTστJ∇vTh JG(detG)−1/2(τTGτ)−1τK d`,

so, with G̃ = G(detG)−1/2(τTGτ)−1 and G̃h = Gh(detGh)−1/2(τTGhτ)−1, we have

Ae =

∫
e

τTστJ∇vTh J(G̃h − G̃)τK d`.

Writing

G̃− G̃h = G(detG)−1/2

(
(τTGhτ)− (τTGτ)

(τTGhτ)(τTGτ)

)
+G

(√
detGh −

√
detG

√
detGh

√
detG

)
(τTGhτ)−1

+ (G−Gh)(detGh)−1/2(τTGhτ)−1

shows that for each Kj ∈ Th with e ⊂ ∂Kj ,

‖(G̃− G̃h)|∂Kj
‖L2(e)≤ C‖ (Gh −G)|∂Kj

‖L2(e).

The trace inequality then gives, if e ∈ E̊h,

|Ae| ≤ C‖τTστ‖L∞(e)

(∥∥∇vh|∂K1

∥∥
L2(e)

+
∥∥∇vh|∂K2

∥∥
L2(e)

)
×
(
‖(G−Gh)|∂K1

‖L2(e)+‖(G−Gh)|∂K2
‖L2(e)

)
≤ C‖τTστ‖L∞(e)

(
h−1/2|vh|H1(K1)+h

1/2|vh|H2(K1)

+ h−1/2|vh|H1(K2)+h
1/2|vh|H2(K2)

)
×
(
h−1/2‖Gh −G‖L2(K1)+h

1/2|Gh −G|H1(K1)

+ h−1/2‖Gh −G‖L2(K2)+h
1/2|Gh −G|H1(K2)

)
.(4.16)

For edges e on ∂Ω, the same estimate holds with terms involving K2 replaced by zero.
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Turning now to BK , observe that

〈SGσ,HessG vh〉G,K = 〈σ −GTr(G−1σ),HessG vh〉G,K

=

∫
K

Tr(G−1σG−1 HessG vh)
√

detGdx(4.17)

−
∫
K

Tr(G−1σ) Tr(G−1 HessG vh)
√

detGdx.(4.18)

Observe also that

Tr(G−1σG−1 HessG vh) = Tr(σG−1(HessG vh)G−1) = σ`ka
`k,

where

a`k = G`i
(

∂2vh
∂xi∂xj

− Γmij
∂vh
∂xm

)
Gjk,

and Γmij are the Christoffel symbols associated with G. If a`kh is defined similarly with
Gh in place of G, then it is not hard to see that

‖a`kh − a`k‖L1(K)≤ C
(
‖Gh −G‖L2(K)|vh|H2(K)+‖Gh −G‖H1(K)|vh|H1(K)

)
and

‖a`k‖L2(K)≤ C
(
|vh|H2(K)+|vh|H1(K)

)
,

so∣∣∣∣ ∫
K

Tr(G−1
h σG−1

h HessGh
vh)
√

detGh dx−
∫
K

Tr(G−1σG−1 HessG vh)
√

detGdx

∣∣∣∣
≤
∣∣∣∣∫
K

σ`k(a`kh − a`k)
√

detGh dx

∣∣∣∣+

∣∣∣∣∫
K

σ`ka
`k
(√

detGh −
√

detG
)
dx

∣∣∣∣
≤ C‖σ‖L∞(K)

(
‖Gh −G‖L2(K)|vh|H2(K)+‖Gh −G‖H1(K)|vh|H1(K)

)
.

Using a similar argument for the second term in (4.18), we get∣∣∣∣∫
K

Tr(G−1
h σ) Tr(G−1

h HessGh
vh)
√

detGh dx−
∫
K

Tr(G−1σ) Tr(G−1 HessG vh)
√

detGdx

∣∣∣∣
≤ C‖σ‖L∞(K)

(
‖Gh −G‖L2(K)|vh|H2(K)+‖Gh −G‖H1(K)|vh|H1(K)

)
.

Hence,

(4.19) |BK |≤ C‖σ‖L∞(K)

(
‖Gh −G‖L2(K)|vh|H2(K)+‖Gh −G‖H1(K)|vh|H1(K)

)
.

The proof is completed by summing (4.16) over all edges e, summing (4.19) over all
triangles K, and noting that ‖σ‖L∞(Ω)= ‖gh− δ‖L∞(Ω)≤ C and Gh−G = t(gh− g).

Lemma 4.12. For every t ∈ [0, 1],

|bh(G(t); gh − g, vh)|≤ C
(
h−1‖gh − g‖L2(Ω)+|gh − g|H1

h(Ω)

)(
|vh|H1(Ω)+h|vh|H2

h(Ω)

)
.

Proof. Let σ = gh − g, so that

bh(G(t); gh − g, vh) =
∑
K

〈σ,HessG vh〉G,K +
∑
e∈Eh

〈
τTGστG,

s
∂vh
∂nG

{〉
G,e

.
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As was shown in the proof of Lemma 4.11, we have〈
τTGστG,

s
∂vh
∂nG

{〉
G,e

=

∫
e

τTστJ∇vTh JG̃τK d`,

where G̃ = G(detG)−1/2(τTGτ)−1. Thus, if e = K1 ∩ K2 ∈ E̊h, then the trace
inequality gives∣∣∣∣〈τTGστG,s ∂vh∂nG

{〉
G,e

∣∣∣∣ ≤ C‖τTστ‖L2(e)

(∥∥∇vh|∂K1

∥∥
L2(e)

+
∥∥∇vh|∂K2

∥∥
L2(e)

)
≤ C

(
h−1/2‖σ‖L2(K1)+h

1/2|σ|H1(K1)

)
×
(
h−1/2|vh|H1(K1)+h

1/2|vh|H2(K1)+h
−1/2|vh|H1(K2)+h

1/2|vh|H2(K2)

)
,

and similarly for edges e on ∂Ω. On the other hand,

|〈σ,HessG vh〉G,K |≤ C‖σ‖L2(K)

(
|vh|H1(K)+|vh|H2(K)

)
.

The conclusion follows from summing over all edges e and all triangles K.

We will now finish the proof of Theorem 4.1. Taking vh = Phv and combining
Propositions 4.8, 4.9, and 4.10 with the inverse estimate |vh|H2

h(Ω)≤ Ch−1‖vh‖H1(Ω),

the stability estimate ‖vh‖H1(Ω)≤ C‖v‖H1(Ω), and the upper bound log h−1 ≤ h−1,
we obtain

|〈κh(gh)− κ(g), v〉g| ≤ C
(
h−1‖gh − g‖L2(Ω)+|gh − g|H1

h(Ω)+h inf
uh∈Vh

‖κ(g)− uh‖L2(Ω)

+ h−1 log h−1‖gh − g‖L2(Ω)‖κh(gh)− κ(g)‖H−1(Ω,g)

)
‖v‖H1(Ω).

Taking the supremum over v ∈ H1
0 (Ω) and rearranging gives

(1− Ch−1 log h−1‖gh − g‖L2(Ω))‖κh(gh)− κ(g)‖H−1(Ω,g)

≤ C
(
h−1‖gh − g‖L2(Ω)+|gh − g|H1

h(Ω)+h inf
uh∈Vh

‖κ(g)− uh‖L2(Ω)

)
.

Since we have assumed that limh→0 h
−1 log h−1‖gh − g‖L2(Ω)= 0, we may divide by(

1− Ch−1 log h−1‖gh − g‖L2(Ω)

)
for h sufficiently small to arrive at the H−1(Ω, g)-

estimate in (4.2).
To obtain the L2(Ω)-estimate in (4.2), observe that for any v ∈ L2(Ω), we have

〈κh(gh)− κ(g), v〉g = 〈κh(gh)− κ(g), v − Phv〉g + 〈κh(gh)− κ(g), Phv〉g
= 〈Phκ(g)− κ(g), v − Phv〉g + 〈κh(gh)− κ(g), Phv〉g
≤ ‖Phκ(g)− κ(g)‖L2(Ω,g)‖v − Phv‖L2(Ω,g)+‖κh(gh)− κ(g)‖H−1(Ω,g)‖Phv‖H1(Ω)

≤ C
(
‖Phκ(g)− κ(g)‖L2(Ω)‖v‖L2(Ω,g)+‖κh(gh)− κ(g)‖H−1(Ω,g)‖Phv‖H1(Ω)

)
.

Now since

‖Phv‖H1(Ω)≤ Ch−1‖Phv‖L2(Ω)≤ Ch−1‖Phv‖L2(Ω,g)≤ Ch−1‖v‖L2(Ω,g),
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Fig. 5.1. Partition of K for r = 0, 1, 2.

we deduce that

‖κh(gh)− κ(g)‖L2(Ω) ≤ C‖κh(gh)− κ(g)‖L2(Ω,g)

= C sup
v∈L2(Ω,g)

〈κh(gh)− κ(g), v〉g
‖v‖L2(Ω,g)

≤ C
(

inf
uh∈Vh

‖κ(g)− uh‖L2(Ω)+h
−1‖κh(gh)− κ(g)‖H−1(Ω,g)

)
.

Invoking the H−1(Ω, g)-estimate in (4.2) gives

‖κh(gh)− κ(g)‖L2(Ω)≤ C
(
h−2‖gh − g‖L2(Ω)+h

−1|gh − g|H1
h(Ω)

+ inf
uh∈Vh

‖κ(g)− uh‖L2(Ω)

)
.

(4.20)

Next, assume κ(g) ∈ Hm(Ω)∩H1
0 (Ω), let 1 ≤ k ≤ min{q+ 1,m}, and let vh ∈ Vh

be the Scott-Zhang interpolant of κ(g). Then, using standard inverse estimates and
interpolation error estimates, we obtain

|κh(gh)− κ(g)|Hk
h(Ω)≤ |κh(gh)− vh|Hk

h(Ω)+|vh − κ(g)|Hk
h(Ω)

≤ Ch−k‖κh(gh)− vh‖L2(Ω)+|vh − κ(g)|Hk
h(Ω)

≤ Ch−k
(
‖κh(gh)− κ(g)‖L2(Ω)+‖vh − κ(g)‖L2(Ω)

)
+ |vh − κ(g)|Hk

h(Ω).

≤ C
(
h−k

(
‖κh(gh)− κ(g)‖L2(Ω)+h

`|κ(g)|H`(Ω)

)
+ h`−k|κ(g)|H`(Ω)

)
,

for each ` = k, k+1, . . . ,min{q+1,m}. Combining this with the L2(Ω)-estimate (4.20)
gives (4.3). This completes the proof of Theorem 4.1.

5. Numerical Examples. In this section, we present numerical experiments to
illustrate the convergence rates predicted by Theorem 4.1. We focus on the L2(Ω)-
error, which, upon taking k = 0 and ` = q + 1 in (4.3), satisfies

(5.1) ‖κh(gh)− κ(g)‖L2(Ω)≤ C(hr−1|g|Hr+1(Ω)+h
q+1|κ(g)|Hq+1(Ω)),

assuming that g ∈ Hr+1(Ω)⊗ S, κ(g) ∈ Hq+1(Ω), and gh is taken equal to a suitable
interpolant of g [26, Theorem 2.6].

In our numerical implementation, we took gh equal to a subdivision-based in-
terpolant of g defined as follows. For each K ∈ Th, let K1,K2, . . . ,K(r+1)2 be the
triangles formed by partitioning K along the lines given in barycentric coordinates
(λ0, λ1, λ2) by λi = j/(r + 1), i = 0, 1, 2, j = 1, 2, . . . , r, as depicted in Figure 5.1.
Let Erh(K) be the union of the edges of K1,K2, . . . ,K(r+1)2 . Let Erh = ∪K∈ThErh(K).
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r = 0 r = 1 r = 2

h Error Order Error Order Error Order

1.654 · 10−1 1.535 · 10−1 4.479 · 10−2 2.887 · 10−3

8.606 · 10−2 1.812 · 10−1 −0.25 5.236 · 10−2 −0.24 9.119 · 10−4 1.76
4.442 · 10−2 1.787 · 10−1 0.02 5.152 · 10−2 0.02 3.523 · 10−4 1.44
2.260 · 10−2 1.780 · 10−1 0.01 5.165 · 10−2 0.00 1.592 · 10−4 1.17

Table 5.1
Errors ‖κh(gh)− κ(g)‖L2(Ω) for the metric (1.1) on the square (−1, 1)× (−1, 1).

For each e ∈ Erh, let z(e) ∈ Ω denote the midpoint of e. It is known that the linear
functionals

σ 7→ τTσ(z(e))τ, e ∈ Erh
form a basis for the dual of Σh, where τ is a unit vector (relative to the Euclidean
metric) tangent to e [26, pp. 38-39]. Let {ψe}e∈Erh ⊂ Σh denote the basis for Σh dual
to these functionals:

τTψe(z
(e′))τ =

{
1, if e = e′,

0, otherwise.

We took

(5.2) gh =
∑
e∈Erh

τT g(z(e))τψe.

Table 5.1 shows the errors ‖κh(gh) − κ(g)‖L2(Ω) for the metric (1.1) on Ω =
(−1, 1)× (−1, 1). We computed the discrete Gaussian curvature using Definition 3.1
with q = 1 and r = 0, 1, 2 on triangulations with maximum element diameter h ∈
[0.02, 0.17]. We constructed each triangulation by randomly perturbing the interior
vertices of a uniform triangulation of Ω, as depicted in Figure 1.1a. Observe that
the L2(Ω)-error converges linearly when r = 2 and does not converge when r < 2, in
agreement with the estimate (5.1).

Acknowledgements. I am grateful to Melvin Leok for many helpful discussions.
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