Finite Element Methods for Geometric Evolution Equations*

Evan S. Gawlik

University of Hawaii at Manoa, Honolulu HI 96822, USA, egawlik@hawaii.edu

Abstract. We study finite element methods for the solution of evolution equations in Riemannian geometry. Our focus is on Ricci flow and Ricci-DeTurck flow in two dimensions, where one of the main challenges from a numerical standpoint is to discretize the scalar curvature of a time-dependent Riemannian metric with finite elements. We propose a method for doing this which leverages Regge finite elements – piecewise polynomial symmetric (0, 2)-tensors possessing continuous tangentialtangential components across element interfaces. In the lowest order setting, the finite element method we develop for two-dimensional Ricci flow is closely connected with a popular discretization of Ricci flow in which the scalar curvature is approximated with the so-called angle defect: 2π minus the sum of the angles between edges emanating from a common vertex. We present some results from our ongoing work on the analysis of the method, and we conclude with numerical examples.

Keywords: Finite element \cdot Ricci flow \cdot Scalar curvature \cdot Angle defect

1 Introduction

Partial differential equations governing the evolution of time-dependent Riemannian metrics are ubiquitous in geometric analysis. In this work, we study finite element discretizations of such problems.

The model problem we consider consists of finding a Riemannian metric g(t) on a smooth manifold Ω satisfying

$$\frac{\partial}{\partial t}g = \sigma, \quad g(0) = g_0,$$
 (1)

where g_0 is given and σ is a symmetric (0, 2)-tensor field depending on g and/or t. We are particularly interested in two special cases: (i) two-dimensional normalized Ricci flow, in which case $\sigma = (\bar{R} - R)g$, R is the scalar curvature of g, and \bar{R} is the average of R over Ω (or some other prescribed scalar function); and (ii) two-dimensional Ricci-DeTurck flow, in which case $\sigma = -Rg + \mathcal{L}_w g$ and w is a certain vector field depending on g.

In both Ricci flow and Ricci-DeTurck flow, the problem can be recast as a coupled system of differential equations by treating the (densitized) scalar

^{*} Supported by the NSF under grant DMS-1703719.

2 E. S. Gawlik

curvature R and the metric g as independent variables. As we show below, the system reads

$$\frac{\partial}{\partial t}(R\mu) = (\operatorname{div}_g \operatorname{div}_g S_g \sigma)\mu, \qquad \qquad R(0) = R_0, \qquad (2)$$

$$\frac{\partial}{\partial t}g = \sigma, \qquad \qquad g(0) = g_0, \qquad (3)$$

where R_0 is the scalar curvature of g_0 , div_g is the covariant divergence operator, $\mu = \mu(g)$ is the volume form on Ω determined by g, and $(S_g \sigma)_{ij} = \sigma_{ij} - g_{ij} g^{k\ell} \sigma_{k\ell}$. An advantage of this formulation is that it eliminates the need to discretize the scalar curvature operator (the nonlinear second-order differential operator sending g to R). The scalar curvature R is instead initialized at t = 0 and evolved forward in time by solving the differential equation (2). The latter equation involves a differential operator div_g div_g which is somewhat easier to discretize.

To fix ideas, let us consider the setting in which Ω is a 2-torus. Let \mathcal{T}_h be a triangulation of Ω with maximum element diameter h. Assume that \mathcal{T}_h belongs to a shape-regular, quasi-uniform family of triangulations parametrized by h. Let \mathcal{E}_h denote the set of edges of \mathcal{T}_h . Let $q \in \mathbb{N}$ and $r \in \mathbb{N}_0$. Define finite element spaces

$$V_{h} = \{ v \in H^{1}(\Omega) \mid v|_{K} \in \mathcal{P}_{q}(K), \forall K \in \mathcal{T}_{h} \},$$

$$\Sigma_{h} = \{ \sigma \in L^{2}(\Omega) \otimes \mathbb{S} \mid \sigma|_{K} \in \mathcal{P}_{r}(K) \otimes \mathbb{S}, \forall K \in \mathcal{T}_{h}, \text{ and } \llbracket \tau^{T} \sigma \tau \rrbracket = 0, \forall e \in \mathcal{E}_{h} \},$$

where $\mathcal{P}_r(K)$ denotes the space of polynomials of degree $\leq r$ on K, $[\![\tau^T \sigma \tau]\!]$ denotes the jump in the tangential-tangential component of σ across an edge $e \in \mathcal{E}_h$, and $\mathbb{S} = \{\sigma \in \mathbb{R}^{2 \times 2} \mid \sigma = \sigma^T\}$. The space Σ_h is the space of *Regge finite* elements of degree r [13,4].

For scalar fields u and v on Ω , denote $\langle u, v \rangle_g = \int_{\Omega} uv \, \mu(g)$. For symmetric (0, 2)-tensor fields σ and ρ defined on $K \in \mathcal{T}_h$, let $\langle \sigma, \rho \rangle_{g,K} = \int_K g^{ij} \sigma_{jk} g^{k\ell} \rho_{\ell i} \, \mu(g)$. For $e \in \mathcal{E}_h$, denote $\langle u, v \rangle_{g,e} = \int_e uv \sqrt{\tau^T g\tau} \, d\ell$, where τ is the unit vector tangent to e relative to the Euclidean metric δ , and $d\ell$ is the Euclidean line element along e. With $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, let $\tau_g = \tau/\sqrt{\tau^T g\tau}$, $n_g = Jg\tau/\sqrt{\tau^T g\tau} \det g$, and $\frac{\partial v}{\partial n_g} = n_g^T g \nabla_g v$. Let Hess_g v denote the Riemannian Hessian of v.

To discretize the operator $\operatorname{div}_g \operatorname{div}_g S_g$ appearing in (2), we make use of the metric-dependent bilinear form

$$b_h(g;\sigma,v) = \sum_{K \in \mathcal{T}_h} \langle S_g \sigma, \operatorname{Hess}_g v \rangle_{g,K} + \sum_{e \in \mathcal{E}_h} \left\langle \tau_g^T \sigma \tau_g, \left[\left[\frac{\partial v}{\partial n_g} \right] \right] \right\rangle_{g,e}$$

This bilinear form is a non-Euclidean generalization of the bilinear form used in the classical Hellan-Herrmann-Johnson mixed discretization of the biharmonic equation [9, p. 237]. Using integration by parts, it can be shown that for smooth g, σ , and v, we have $b_h(g; \sigma, v) = \int_{\Omega} (\operatorname{div}_g \operatorname{div}_g S_g \sigma) v \, \mu(g)$.

To discretize (2-3), we choose approximations $R_{h0} \in V_h$ and $g_{h0} \in \Sigma_h$ of R_0 and g_0 , respectively. We then seek $R_h(t) \in V_h$ and $g_h(t) \in \Sigma_h$ such that

 $R_h(0) = R_{h0}, g_h(0) = g_{h0}, \text{ and}$

$$\frac{\partial}{\partial t} \langle R_h, v_h \rangle_{g_h} = b_h(g_h; \sigma_h, v_h), \qquad \forall v_h \in V_h, \qquad (4)$$

$$\frac{\partial}{\partial t}g_h = \sigma_h,\tag{5}$$

where $\sigma_h = \sigma_h(g_h, R_h, t)$ is a discretization of σ . For the moment, we postpone discussing our choice of σ_h ; this will be addressed in the next sections. We assume throughout what follows that (1) and (4-5) preserve the signature of g and g_h , in the sense that the eigenvalues of g and g_h are bounded from below by a positive constant independent of h, x, and t.

1.1 Connection with the angle defect

An important feature of (4) is its connection with the widely studied *angle defect* from discrete differential geometry [2,14,5]. Recall that the angle defect Θ_i at the i^{th} vertex $y^{(i)} \in \Omega$ of the triangulation \mathcal{T}_h measures the failure of the angles incident at $y^{(i)}$ to sum up to 2π :

$$\Theta_i = 2\pi - \sum_{K \in \omega_i} \theta_{iK}.$$
 (6)

Here, ω_i denotes the set of triangles in \mathcal{T}_h having $y^{(i)}$ as a vertex, and θ_{iK} denotes the interior angle of K at $y^{(i)}$. The following proposition shows that in the lowest order setting (r = 0 and q = 1), the differential equation (4) reproduces the angle defect if R_{h0} is chosen appropriately.

Proposition 1. Let r = 0 and q = 1. Let $\{\phi_i\}_i$ be the basis for V_h satisfying $\phi_i(y^{(j)}) = \delta_i^j$, and let Θ_{i0} be the angle defect at vertex $y^{(i)}$ as measured by g_{h0} . If

$$\langle R_{h0}, \phi_i \rangle_{g_{h0}} = 2\Theta_{i0},\tag{7}$$

then the solution of (4)-(5) satisfies

$$\langle R_h(t), \phi_i \rangle_{g_h(t)} = 2\Theta_i(t)$$

for every t, where $\Theta_i(t)$ is the angle defect at vertex $y^{(i)}$ as measured by $g_h(t)$.

Proof. It is shown in [8, Lemma 3.3] that

$$\frac{\partial}{\partial t}(2\Theta_i(t)) = b_h\left(g_h(t); \frac{\partial}{\partial t}g_h(t), \phi_i\right),\tag{8}$$

so $2\Theta_i(t)$ and $\langle R_h(t), \phi_i \rangle_{q_h(t)}$ obey the same ordinary differential equation.

The relation (8) is a discrete analogue of the following relation which holds in the smooth setting.

3

4 E. S. Gawlik

Proposition 2. Let g(t) be a smooth Riemannian metric on Ω depending smoothly on t. Then, for every smooth scalar field v,

$$\frac{\partial}{\partial t} \langle R(g(t)), v \rangle_{g(t)} = \left\langle \operatorname{div}_{g(t)} \operatorname{div}_{g(t)} S_{g(t)} \frac{\partial g}{\partial t}, v \right\rangle_{g(t)}$$

Remark 1. The relation above is not valid in dimensions greater than 2.

Proof. We have

$$\frac{\partial}{\partial t} \langle R(g(t)), v \rangle_{g(t)} = \int_{\Omega} \left(DR(g(t)) \cdot \sigma(t) \right) v \, \mu(g(t)) + \int_{\Omega} R(g(t)) v \left(D\mu(g(t)) \cdot \sigma(t) \right),$$

where $\sigma(t) = \frac{\partial}{\partial t}g(t)$. The linearizations of R and μ are given by [6, Lemma 2]

$$DR(g) \cdot \sigma = \operatorname{div}_g \operatorname{div}_g \sigma - \Delta_g(g^{ij}\sigma_{ij}) - g^{ij}\sigma_{jk}g^{k\ell}\operatorname{Ric}_{\ell i},$$
$$D\mu(g) \cdot \sigma = \frac{1}{2}g^{ij}\sigma_{ij}\mu(g).$$

Since $\operatorname{Ric} = \frac{1}{2}Rg$ in two dimensions and $\Delta_g u = \operatorname{div}_g \operatorname{div}_g(gu)$ for any scalar field u, the first expression simplifies to

$$DR(g) \cdot \sigma = \operatorname{div}_g \operatorname{div}_g S_g \sigma - \frac{1}{2} R g^{ij} \sigma_{ij}.$$

Combining these gives

$$\frac{\partial}{\partial t} \langle R(g(t)), v \rangle_{g(t)} = \int_{\Omega} \left(\operatorname{div}_{g} \operatorname{div}_{g} S_{g} \sigma \right) v \, \mu.$$

2 Ricci flow

Let us now focus on two-dimensional normalized Ricci flow, which corresponds to the choice $\sigma = (\bar{R} - R)g$ in (1). As before, R is the scalar curvature of g and \bar{R} is the average of R over Ω (or some other prescribed scalar function).

Several simplifications can be made in this setting. Since σ is proportional to g, we have $\operatorname{div}_g \operatorname{div}_g S_g \sigma = \Delta_g(\bar{R} - R) - 2\Delta_g(\bar{R} - R) = \Delta_g(R - \bar{R})$, so that (2) reduces to

$$\frac{\partial}{\partial t}(R\mu) = (\Delta_g(R - \bar{R}))\mu.$$

This offers us some flexibility in our choice of discretization. One option is to use (4-5) as it is written, choosing σ_h equal to

$$\sigma_h = P_h((R_h - R_h)g_h),\tag{9}$$

where P_h is any projector onto Σ_h whose domain contains $\{v_h\rho_h \mid v_h \in V_h, \rho_h \in \Sigma_h\}$, and $\bar{R}_h \in V_h$ is equal to \bar{R} or an approximation thereof. Another option is to use the discretization

$$\frac{\partial}{\partial t} \langle R_h, v_h \rangle_{g_h} = \langle \nabla_{g_h} (\bar{R}_h - R_h), \nabla_{g_h} v_h \rangle_{g_h}, \qquad \forall v_h \in V_h, \qquad (10)$$

$$\frac{\partial}{\partial t}g_h = \sigma_h,\tag{11}$$

again with σ_h given by (9).

The next proposition gives an example of a setting in which (4-5) and (10-11) are equivalent. In it, we denote by $z^{(e)} \in \Omega$ the midpoint of an edge $e \in \mathcal{E}_h$. Note that when r = 0, the linear functionals

$$\rho \mapsto \tau^T \rho(z^{(e)}) \tau, \quad e \in \mathcal{E}_h$$

form a basis for the dual of Σ_h . We denote by $\{\psi_e\}_{e \in \mathcal{E}_h} \subset \Sigma_h$ the basis for Σ_h satisfying

$$\tau^T \psi_e(z^{(e')})\tau = \begin{cases} 1, & \text{if } e = e', \\ 0, & \text{otherwise.} \end{cases}$$

Proposition 3. Let r = 0 and q = 1. Let P_h be given by

$$P_h \rho = \sum_{e \in \mathcal{E}_h} (\tau^T \rho(z^{(e)}) \tau) \psi_e,$$

and let σ_h be given by (9). Choose R_{h0} equal to the unique element of V_h satisfying (7) for every i. Then, with initial conditions $R_h(0) = R_{h0}$ and $g_h(0) = g_{h0}$, problems (4-5) and (10-11) are equivalent. Furthermore, the solution $g_h(t)$ satisfies

$$g_h(t) = P_h(e^{u_h(t)}g_{h0}), (12)$$

where $u_h(t) \in V_h$ obeys the differential equation

$$\frac{\partial}{\partial t}u_h = \bar{R}_h - R_h, \quad u_h(0) = 0, \tag{13}$$

and the solution $R_h(t)$ satisfies

$$\langle R_h(t), \phi_i \rangle_{g_h(t)} = 2\Theta_i(t) \tag{14}$$

for every t and every i, where $\Theta_i(t)$ is the angle defect at vertex $y^{(i)}$ as measured by $g_h(t)$.

Proof. Using the fact that functions in V_h are piecewise linear when q = 1, one verifies through integration by parts that

$$b_h(g_h; P_h((\bar{R}_h - R_h)g_h), v_h) = b_h(g_h; (\bar{R}_h - R_h)g_h, v_h)$$
$$= \langle \nabla_{g_h}(\bar{R}_h - R_h), \nabla_{g_h}v_h \rangle_{g_h}$$

for every $v_h \in V_h$. This demonstrates the equivalence of (4-5) and (10-11). To deduce (12-13), observe that differentiating (12) and invoking (13) gives

$$\frac{\partial}{\partial t}g_h = P_h\left((\bar{R}_h - R_h)e^{u_h}g_{h0}\right)$$
$$= P_h\left((\bar{R}_h - R_h)P_h(e^{u_h}g_{h0})\right)$$
$$= P_h\left((\bar{R}_h - R_h)g_h\right)$$
$$= \sigma_h$$

where the second line above follows from our choice of P_h . The relation (14) between $R_h(t)$ and the angle defect follows from Proposition 1.

6 E. S. Gawlik

2.1 Connection with other discretizations of Ricci flow

Proposition 3 reveals a close connection between the lowest-order version of our finite element discretization of Ricci flow and another popular finite difference scheme for Ricci flow [3,11]. In this popular method, (Ω, g) is discretized with a triangulation having time-dependent edge lengths ℓ_{ij} between adjacent vertices i and j. The scalar curvature R(g) (which is twice the Gaussian curvature) is then approximated by (two times) the angle defect. The method stores a time-dependent scalar u_i at each vertex i which evolves according to

$$\frac{\partial}{\partial t}u_i = 2(\bar{\Theta}_i - \Theta_i). \tag{15}$$

where $\bar{\Theta}_i$ is prescribed. (Note that in [3], (15) is expressed in terms of $r_i := e^{u_i/2}$ rather than u_i .) This collection of scalars determines the lengths ℓ_{ij} of all edges at time t in terms of their lengths at t = 0 via a relation which is analogous to (12) but is motivated by circle packing theory [12] rather than finite element theory. (Other choices are also possible; see [10, Section 5] and [15] for a discussion of alternatives.)

The connection with our finite element discretization is now transparent. In the lowest order instance of our finite element discretization (r = 0 and q = 1), the degrees of freedom for u_h and g_h are the values of u_h at each vertex and the squared length of each edge as measured by g_h . According to equations (13) and (12), these degrees of freedom evolve in nearly the same way that u_i and ℓ_{ij} evolve in [3,11].

There is one important discrepancy, however: Equation (15) is not a consistent discretization of normalized Ricci flow. This is because the angle defect (6) approximates the *integral* of the Gaussian curvature over a cell which is dual to vertex *i*, not its average over the cell. See [1, Remark B.2.4] for more insight. In many applications, this is not a serious concern, since very often the goal is not to accurately approximate Ricci flow, but rather to construct a discrete conformal mapping from a given triangulation to one with prescribed discrete curvature.

Putting this discrepancy aside, the similarities noted above suggest that our finite element method (with $r \ge 0$ and $q \ge 1$) can be loosely regarded as a high-order generalization of the scheme studied in [3,11]. A link like this does not appear to hold for some other finite element discretizations of Ricci flow such as the one studied in [7]. In particular, [7] relies on the existence of an embedding of (Ω, q) into \mathbb{R}^3 .

3 Error Analysis

We now discuss some of our ongoing work on the analysis of the accuracy of the discretization (4-5). One setting which is particularly easy to analyze is that in which σ and σ_h are prescribed functions of t. Then estimates for $g_h - g$ are immediate, and it remains to estimate $R_h - R$. The following proposition

gives estimates for $R_h - R$ in the metric-dependent negative-order Sobolev-norm (recall that Ω has no boundary)

$$\|v\|_{H^{-1}(\Omega,g)} = \sup_{u \in H^{1}(\Omega)} \frac{\langle v, u \rangle_{g}}{\|u\|_{H^{1}(\Omega)}}.$$
(16)

In what follows, we take $\bar{R} = \bar{R}_h$ to be constant, we assume r > 0, and we make use of the broken Sobolev semi-norm $|\sigma|_{H_h^1(\Omega)} = \left(\sum_{K \in \mathcal{T}_h} |\sigma|_{H^1(K)}^2\right)^{1/2}$.

Proposition 4. If σ and σ_h depend only on t, and if g and R are sufficiently regular, then for T > 0 small enough, the solutions of (2-3) and (4-5) satisfy

$$\begin{split} \|g_{h}(T) - g(T)\|_{L^{2}(\Omega)} &\leq \|g_{h0} - g_{0}\|_{L^{2}(\Omega)} + \int_{0}^{T} \|\sigma_{h}(t) - \sigma(t)\|_{L^{2}(\Omega)} dt, \\ \|R_{h}(T) - R(T)\|_{H^{-1}(\Omega,g(T))} \\ &\leq C \bigg(\int_{0}^{T} \left(h^{-1} \|\sigma_{h}(t) - \sigma(t)\|_{L^{2}(\Omega)} + |\sigma_{h}(t) - \sigma(t)|_{H^{1}_{h}(\Omega)} \right) dt \\ &\quad + \inf_{u_{h} \in V_{h}} \|R(T) - u_{h}\|_{H^{-1}(\Omega,g(T))} + \|R_{h0} - R_{0}\|_{H^{-1}(\Omega,g(T))} \bigg). \end{split}$$

Proof. The estimate for $g_h(T) - g(T)$ is immediate, and the estimate for $R_h(T) - R(T)$ can be obtained by extending the analysis in [8], which studies the case in which $g(t) = \frac{T-t}{T}\delta + \frac{t}{T}g(T), g_h(t) = \frac{T-t}{T}\delta + \frac{t}{T}g_h(T)$, and $R_{h0} = R_0 = 0$.

Choosing g_{h0} , R_{h0} , and $\sigma_h(t)$ equal to suitable interpolants of g_0 , R_0 , and $\sigma(t)$, one obtains from Proposition 4 estimates of the form

$$||g_h(T) - g(T)||_{L^2(\Omega)} \le Ch^{r+1},$$

$$||R_h(T) - R(T)||_{H^{-1}(\Omega, g(T))} \le C(h^r + h^{q+2})$$

for sufficiently regular solutions.

4 Numerical Examples

Figure 1 plots a numerical simulation of normalized Ricci flow obtained using the finite element method (4-5) with the parameter choices described in Proposition 3. Here, \mathcal{T}_h was taken equal to a triangulation of a 2-sphere rather than a 2-torus. At each instant $t \geq 0$, we visualized $g_h(t)$ by numerically determining an embedding of the vertices of \mathcal{T}_h into \mathbb{R}^3 with the property that the distances between adjacent vertices agree with the edge lengths determined by $g_h(t)$.

References

1. Bobenko, A.I., Pinkall, U., Springborn, B.A.: Discrete conformal maps and ideal hyperbolic polyhedra. Geometry & Topology **19**(4), 2155–2215 (2015)

Fig. 1. Numerical solution at t = 0, t = 0.05, and t = 0.75.

- Cheeger, J., Müller, W., Schrader, R.: On the curvature of piecewise flat spaces. Communications in Mathematical Physics 92(3), 405–454 (1984)
- Chow, B., Luo, F.: Combinatorial Ricci flows on surfaces. Journal of Differential Geometry 63(1), 97–129 (2003)
- Christiansen, S.H.: On the linearization of Regge calculus. Numerische Mathematik 119(4), 613–640 (2011)
- Crane, K., Desbrun, M., Schröder, P.: Trivial connections on discrete surfaces. In: Computer Graphics Forum. vol. 29, pp. 1525–1533. Wiley Online Library (2010)
- Fischer, A.E., Marsden, J.E.: Deformations of the scalar curvature. Duke Mathematical Journal 42(3), 519–547 (1975)
- Fritz, H.: Numerical Ricci–DeTurck flow. Numerische Mathematik 131(2), 241–271 (2015)
- 8. Gawlik, E.S.: High order approximation of Gaussian curvature with Regge finite elements. arXiv preprint arXiv:1905.07004 (2019)
- 9. Girault, V., Raviart, P.A.: Finite element methods for Navier-Stokes equations: Theory and algorithms. Springer-Verlag (1986)
- Glickenstein, D.: Discrete conformal variations and scalar curvature on piecewise flat two-and three-dimensional manifolds. Journal of Differential Geometry 87(2), 201–238 (2011)
- Jin, M., Kim, J., Luo, F., Gu, X.: Discrete surface Ricci flow. IEEE Transactions on Visualization and Computer Graphics 14(5), 1030–1043 (2008)
- Kharevych, L., Springborn, B., Schröder, P.: Discrete conformal mappings via circle patterns. ACM Transactions on Graphics (TOG) 25(2), 412–438 (2006)
- Li, L.: Regge Finite Elements with Applications in Solid Mechanics and Relativity. Ph.D. thesis, University of Minnesota (5 2018)
- Regge, T.: General relativity without coordinates. Il Nuovo Cimento (1955-1965) 19(3), 558–571 (1961)
- Springborn, B., Schröder, P., Pinkall, U.: Conformal equivalence of triangle meshes. ACM Transactions on Graphics (TOG) 27(3), 77 (2008)