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Abstract. We study finite element methods for the solution of evolu-
tion equations in Riemannian geometry. Our focus is on Ricci flow and
Ricci-DeTurck flow in two dimensions, where one of the main challenges
from a numerical standpoint is to discretize the scalar curvature of a
time-dependent Riemannian metric with finite elements. We propose a
method for doing this which leverages Regge finite elements – piecewise
polynomial symmetric (0, 2)-tensors possessing continuous tangential-
tangential components across element interfaces. In the lowest order set-
ting, the finite element method we develop for two-dimensional Ricci flow
is closely connected with a popular discretization of Ricci flow in which
the scalar curvature is approximated with the so-called angle defect: 2π
minus the sum of the angles between edges emanating from a common
vertex. We present some results from our ongoing work on the analysis
of the method, and we conclude with numerical examples.
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1 Introduction

Partial differential equations governing the evolution of time-dependent Rieman-
nian metrics are ubiquitous in geometric analysis. In this work, we study finite
element discretizations of such problems.

The model problem we consider consists of finding a Riemannian metric g(t)
on a smooth manifold Ω satisfying

∂

∂t
g = σ, g(0) = g0, (1)

where g0 is given and σ is a symmetric (0, 2)-tensor field depending on g and/or
t. We are particularly interested in two special cases: (i) two-dimensional nor-
malized Ricci flow, in which case σ = (R̄ − R)g, R is the scalar curvature of g,
and R̄ is the average of R over Ω (or some other prescribed scalar function); and
(ii) two-dimensional Ricci-DeTurck flow, in which case σ = −Rg + Lwg and w
is a certain vector field depending on g.

In both Ricci flow and Ricci-DeTurck flow, the problem can be recast as
a coupled system of differential equations by treating the (densitized) scalar
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curvature R and the metric g as independent variables. As we show below, the
system reads

∂

∂t
(Rµ) = (divg divg Sgσ)µ, R(0) = R0, (2)

∂

∂t
g = σ, g(0) = g0, (3)

where R0 is the scalar curvature of g0, divg is the covariant divergence operator,
µ = µ(g) is the volume form on Ω determined by g, and (Sgσ)ij = σij−gijgk`σk`.
An advantage of this formulation is that it eliminates the need to discretize
the scalar curvature operator (the nonlinear second-order differential operator
sending g to R). The scalar curvature R is instead initialized at t = 0 and evolved
forward in time by solving the differential equation (2). The latter equation
involves a differential operator divg divg which is somewhat easier to discretize.

To fix ideas, let us consider the setting in which Ω is a 2-torus. Let Th be a
triangulation of Ω with maximum element diameter h. Assume that Th belongs
to a shape-regular, quasi-uniform family of triangulations parametrized by h.
Let Eh denote the set of edges of Th. Let q ∈ N and r ∈ N0. Define finite element
spaces

Vh = {v ∈ H1(Ω) | v|K ∈ Pq(K), ∀K ∈ Th},
Σh = {σ ∈ L2(Ω)⊗ S | σ|K ∈ Pr(K)⊗ S, ∀K ∈ Th, and JτTστK = 0, ∀e ∈ Eh},

where Pr(K) denotes the space of polynomials of degree ≤ r on K, JτTστK
denotes the jump in the tangential-tangential component of σ across an edge
e ∈ Eh, and S = {σ ∈ R2×2 | σ = σT }. The space Σh is the space of Regge finite
elements of degree r [13,4].

For scalar fields u and v on Ω, denote 〈u, v〉g =
∫
Ω
uv µ(g). For symmetric

(0, 2)-tensor fields σ and ρ defined onK ∈ Th, let 〈σ, ρ〉g,K =
∫
K
gijσjkg

k`ρ`i µ(g).

For e ∈ Eh, denote 〈u, v〉g,e =
∫
e
uv
√
τT gτ d`, where τ is the unit vector tangent

to e relative to the Euclidean metric δ, and d` is the Euclidean line element
along e. With J =

(
0 1
−1 0

)
, let τg = τ/

√
τT gτ , ng = Jgτ/

√
τT gτ det g, and

∂v
∂ng

= nTg g∇gv. Let Hessg v denote the Riemannian Hessian of v.

To discretize the operator divg divg Sg appearing in (2), we make use of the
metric-dependent bilinear form

bh(g;σ, v) =
∑
K∈Th

〈Sgσ,Hessg v〉g,K +
∑
e∈Eh

〈
τTg στg,

s
∂v

∂ng

{〉
g,e

.

This bilinear form is a non-Euclidean generalization of the bilinear form used in
the classical Hellan-Herrmann-Johnson mixed discretization of the biharmonic
equation [9, p. 237]. Using integration by parts, it can be shown that for smooth
g, σ, and v, we have bh(g;σ, v) =

∫
Ω

(divg divg Sgσ)v µ(g).
To discretize (2-3), we choose approximations Rh0 ∈ Vh and gh0 ∈ Σh of

R0 and g0, respectively. We then seek Rh(t) ∈ Vh and gh(t) ∈ Σh such that
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Rh(0) = Rh0, gh(0) = gh0, and

∂

∂t
〈Rh, vh〉gh = bh(gh;σh, vh), ∀vh ∈ Vh, (4)

∂

∂t
gh = σh, (5)

where σh = σh(gh, Rh, t) is a discretization of σ. For the moment, we postpone
discussing our choice of σh; this will be addressed in the next sections. We assume
throughout what follows that (1) and (4-5) preserve the signature of g and gh, in
the sense that the eigenvalues of g and gh are bounded from below by a positive
constant independent of h, x, and t.

1.1 Connection with the angle defect

An important feature of (4) is its connection with the widely studied angle defect
from discrete differential geometry [2,14,5]. Recall that the angle defect Θi at
the ith vertex y(i) ∈ Ω of the triangulation Th measures the failure of the angles
incident at y(i) to sum up to 2π:

Θi = 2π −
∑
K∈ωi

θiK . (6)

Here, ωi denotes the set of triangles in Th having y(i) as a vertex, and θiK denotes
the interior angle of K at y(i). The following proposition shows that in the lowest
order setting (r = 0 and q = 1), the differential equation (4) reproduces the angle
defect if Rh0 is chosen appropriately.

Proposition 1. Let r = 0 and q = 1. Let {φi}i be the basis for Vh satisfying
φi(y

(j)) = δji , and let Θi0 be the angle defect at vertex y(i) as measured by gh0.
If

〈Rh0, φi〉gh0
= 2Θi0, (7)

then the solution of (4)-(5) satisfies

〈Rh(t), φi〉gh(t) = 2Θi(t)

for every t, where Θi(t) is the angle defect at vertex y(i) as measured by gh(t).

Proof. It is shown in [8, Lemma 3.3] that

∂

∂t
(2Θi(t)) = bh

(
gh(t);

∂

∂t
gh(t), φi

)
, (8)

so 2Θi(t) and 〈Rh(t), φi〉gh(t) obey the same ordinary differential equation.

The relation (8) is a discrete analogue of the following relation which holds
in the smooth setting.
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Proposition 2. Let g(t) be a smooth Riemannian metric on Ω depending smoothly
on t. Then, for every smooth scalar field v,

∂

∂t
〈R(g(t)), v〉g(t) =

〈
divg(t) divg(t) Sg(t)

∂g

∂t
, v

〉
g(t)

.

Remark 1. The relation above is not valid in dimensions greater than 2.

Proof. We have

∂

∂t
〈R(g(t)), v〉g(t) =

∫
Ω

(DR(g(t)) · σ(t)) v µ(g(t)) +

∫
Ω

R(g(t))v (Dµ(g(t)) · σ(t)) ,

where σ(t) = ∂
∂tg(t). The linearizations of R and µ are given by [6, Lemma 2]

DR(g) · σ = divg divg σ −∆g(g
ijσij)− gijσjkgk` Ric`i,

Dµ(g) · σ =
1

2
gijσijµ(g).

Since Ric = 1
2Rg in two dimensions and ∆gu = divg divg(gu) for any scalar field

u, the first expression simplifies to

DR(g) · σ = divg divg Sgσ −
1

2
Rgijσij .

Combining these gives

∂

∂t
〈R(g(t)), v〉g(t) =

∫
Ω

(divg divg Sgσ) v µ.

2 Ricci flow

Let us now focus on two-dimensional normalized Ricci flow, which corresponds
to the choice σ = (R̄−R)g in (1). As before, R is the scalar curvature of g and
R̄ is the average of R over Ω (or some other prescribed scalar function).

Several simplifications can be made in this setting. Since σ is proportional to
g, we have divg divg Sgσ = ∆g(R̄−R)− 2∆g(R̄−R) = ∆g(R− R̄), so that (2)
reduces to

∂

∂t
(Rµ) = (∆g(R− R̄))µ.

This offers us some flexibility in our choice of discretization. One option is to
use (4-5) as it is written, choosing σh equal to

σh = Ph((R̄h −Rh)gh), (9)

where Ph is any projector onto Σh whose domain contains {vhρh | vh ∈ Vh, ρh ∈
Σh}, and R̄h ∈ Vh is equal to R̄ or an approximation thereof. Another option is
to use the discretization

∂

∂t
〈Rh, vh〉gh = 〈∇gh(R̄h −Rh),∇ghvh〉gh , ∀vh ∈ Vh, (10)

∂

∂t
gh = σh, (11)
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again with σh given by (9).
The next proposition gives an example of a setting in which (4-5) and (10-11)

are equivalent. In it, we denote by z(e) ∈ Ω the midpoint of an edge e ∈ Eh. Note
that when r = 0, the linear functionals

ρ 7→ τT ρ(z(e))τ, e ∈ Eh
form a basis for the dual of Σh. We denote by {ψe}e∈Eh ⊂ Σh the basis for Σh
satisfying

τTψe(z
(e′))τ =

{
1, if e = e′,

0, otherwise.

Proposition 3. Let r = 0 and q = 1. Let Ph be given by

Phρ =
∑
e∈Eh

(τT ρ(z(e))τ)ψe,

and let σh be given by (9). Choose Rh0 equal to the unique element of Vh satisfy-
ing (7) for every i. Then, with initial conditions Rh(0) = Rh0 and gh(0) = gh0,
problems (4-5) and (10-11) are equivalent. Furthermore, the solution gh(t) sat-
isfies

gh(t) = Ph(euh(t)gh0), (12)

where uh(t) ∈ Vh obeys the differential equation

∂

∂t
uh = R̄h −Rh, uh(0) = 0, (13)

and the solution Rh(t) satisfies

〈Rh(t), φi〉gh(t) = 2Θi(t) (14)

for every t and every i, where Θi(t) is the angle defect at vertex y(i) as measured
by gh(t).

Proof. Using the fact that functions in Vh are piecewise linear when q = 1, one
verifies through integration by parts that

bh(gh;Ph((R̄h −Rh)gh), vh) = bh(gh; (R̄h −Rh)gh, vh)

= 〈∇gh(R̄h −Rh),∇ghvh〉gh
for every vh ∈ Vh. This demonstrates the equivalence of (4-5) and (10-11). To
deduce (12-13), observe that differentiating (12) and invoking (13) gives

∂

∂t
gh = Ph

(
(R̄h −Rh)euhgh0

)
= Ph

(
(R̄h −Rh)Ph(euhgh0)

)
= Ph

(
(R̄h −Rh)gh

)
= σh

where the second line above follows from our choice of Ph. The relation (14)
between Rh(t) and the angle defect follows from Proposition 1.
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2.1 Connection with other discretizations of Ricci flow

Proposition 3 reveals a close connection between the lowest-order version of our
finite element discretization of Ricci flow and another popular finite difference
scheme for Ricci flow [3,11]. In this popular method, (Ω, g) is discretized with a
triangulation having time-dependent edge lengths `ij between adjacent vertices
i and j. The scalar curvature R(g) (which is twice the Gaussian curvature) is
then approximated by (two times) the angle defect. The method stores a time-
dependent scalar ui at each vertex i which evolves according to

∂

∂t
ui = 2(Θ̄i −Θi). (15)

where Θ̄i is prescribed. (Note that in [3], (15) is expressed in terms of ri := eui/2

rather than ui.) This collection of scalars determines the lengths `ij of all edges at
time t in terms of their lengths at t = 0 via a relation which is analogous to (12)
but is motivated by circle packing theory [12] rather than finite element theory.
(Other choices are also possible; see [10, Section 5] and [15] for a discussion of
alternatives.)

The connection with our finite element discretization is now transparent. In
the lowest order instance of our finite element discretization (r = 0 and q = 1),
the degrees of freedom for uh and gh are the values of uh at each vertex and
the squared length of each edge as measured by gh. According to equations (13)
and (12), these degrees of freedom evolve in nearly the same way that ui and `ij
evolve in [3,11].

There is one important discrepancy, however: Equation (15) is not a consis-
tent discretization of normalized Ricci flow. This is because the angle defect (6)
approximates the integral of the Gaussian curvature over a cell which is dual to
vertex i, not its average over the cell. See [1, Remark B.2.4] for more insight.
In many applications, this is not a serious concern, since very often the goal
is not to accurately approximate Ricci flow, but rather to construct a discrete
conformal mapping from a given triangulation to one with prescribed discrete
curvature.

Putting this discrepancy aside, the similarities noted above suggest that our
finite element method (with r ≥ 0 and q ≥ 1) can be loosely regarded as a high-
order generalization of the scheme studied in [3,11]. A link like this does not
appear to hold for some other finite element discretizations of Ricci flow such as
the one studied in [7]. In particular, [7] relies on the existence of an embedding
of (Ω, g) into R3.

3 Error Analysis

We now discuss some of our ongoing work on the analysis of the accuracy of
the discretization (4-5). One setting which is particularly easy to analyze is that
in which σ and σh are prescribed functions of t. Then estimates for gh − g
are immediate, and it remains to estimate Rh − R. The following proposition
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gives estimates for Rh−R in the metric-dependent negative-order Sobolev-norm
(recall that Ω has no boundary)

‖v‖H−1(Ω,g) = sup
u∈H1(Ω)

〈v, u〉g
‖u‖H1(Ω)

. (16)

In what follows, we take R̄ = R̄h to be constant, we assume r > 0, and we make

use of the broken Sobolev semi-norm |σ|H1
h(Ω) =

(∑
K∈Th |σ|

2
H1(K)

)1/2
.

Proposition 4. If σ and σh depend only on t, and if g and R are sufficiently
regular, then for T > 0 small enough, the solutions of (2-3) and (4-5) satisfy

‖gh(T )− g(T )‖L2(Ω) ≤ ‖gh0 − g0‖L2(Ω) +

∫ T

0

‖σh(t)− σ(t)‖L2(Ω) dt,

‖Rh(T )−R(T )‖H−1(Ω,g(T ))

≤ C
(∫ T

0

(
h−1‖σh(t)− σ(t)‖L2(Ω) + |σh(t)− σ(t)|H1

h(Ω)

)
dt

+ inf
uh∈Vh

‖R(T )− uh‖H−1(Ω,g(T )) + ‖Rh0 −R0‖H−1(Ω,g(T ))

)
.

Proof. The estimate for gh(T )−g(T ) is immediate, and the estimate for Rh(T )−
R(T ) can be obtained by extending the analysis in [8], which studies the case in
which g(t) = T−t

T δ + t
T g(T ), gh(t) = T−t

T δ + t
T gh(T ), and Rh0 = R0 = 0.

Choosing gh0, Rh0, and σh(t) equal to suitable interpolants of g0, R0, and
σ(t), one obtains from Proposition 4 estimates of the form

‖gh(T )− g(T )‖L2(Ω) ≤ Chr+1,

‖Rh(T )−R(T )‖H−1(Ω,g(T )) ≤ C(hr + hq+2)

for sufficiently regular solutions.

4 Numerical Examples

Figure 1 plots a numerical simulation of normalized Ricci flow obtained using
the finite element method (4-5) with the parameter choices described in Propo-
sition 3. Here, Th was taken equal to a triangulation of a 2-sphere rather than
a 2-torus. At each instant t ≥ 0, we visualized gh(t) by numerically determining
an embedding of the vertices of Th into R3 with the property that the distances
between adjacent vertices agree with the edge lengths determined by gh(t).
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