Finite Element Methods for Geometric Evolution Equations*

Evan S. Gawlik
University of Hawaii at Manoa, Honolulu HI 96822, USA, egawlik@hawaii.edu

Abstract

We study finite element methods for the solution of evolution equations in Riemannian geometry. Our focus is on Ricci flow and Ricci-DeTurck flow in two dimensions, where one of the main challenges from a numerical standpoint is to discretize the scalar curvature of a time-dependent Riemannian metric with finite elements. We propose a method for doing this which leverages Regge finite elements - piecewise polynomial symmetric (0,2)-tensors possessing continuous tangentialtangential components across element interfaces. In the lowest order setting, the finite element method we develop for two-dimensional Ricci flow is closely connected with a popular discretization of Ricci flow in which the scalar curvature is approximated with the so-called angle defect: 2π minus the sum of the angles between edges emanating from a common vertex. We present some results from our ongoing work on the analysis of the method, and we conclude with numerical examples.

Keywords: Finite element • Ricci flow • Scalar curvature • Angle defect

1 Introduction

Partial differential equations governing the evolution of time-dependent Riemannian metrics are ubiquitous in geometric analysis. In this work, we study finite element discretizations of such problems.

The model problem we consider consists of finding a Riemannian metric $g(t)$ on a smooth manifold Ω satisfying

$$
\begin{equation*}
\frac{\partial}{\partial t} g=\sigma, \quad g(0)=g_{0} \tag{1}
\end{equation*}
$$

where g_{0} is given and σ is a symmetric (0,2)-tensor field depending on g and/or t. We are particularly interested in two special cases: (i) two-dimensional normalized Ricci flow, in which case $\sigma=(\bar{R}-R) g, R$ is the scalar curvature of g, and \bar{R} is the average of R over Ω (or some other prescribed scalar function); and (ii) two-dimensional Ricci-DeTurck flow, in which case $\sigma=-R g+\mathcal{L}_{w} g$ and w is a certain vector field depending on g.

In both Ricci flow and Ricci-DeTurck flow, the problem can be recast as a coupled system of differential equations by treating the (densitized) scalar

[^0]curvature R and the metric g as independent variables. As we show below, the system reads
\[

$$
\begin{align*}
\frac{\partial}{\partial t}(R \mu) & =\left(\operatorname{div}_{g} \operatorname{div}_{g} S_{g} \sigma\right) \mu, & R(0) & =R_{0} \tag{2}\\
\frac{\partial}{\partial t} g & =\sigma, & g(0) & =g_{0} \tag{3}
\end{align*}
$$
\]

where R_{0} is the scalar curvature of $g_{0}, \operatorname{div}_{g}$ is the covariant divergence operator, $\mu=\mu(g)$ is the volume form on Ω determined by g, and $\left(S_{g} \sigma\right)_{i j}=\sigma_{i j}-g_{i j} g^{k \ell} \sigma_{k \ell}$. An advantage of this formulation is that it eliminates the need to discretize the scalar curvature operator (the nonlinear second-order differential operator sending g to R). The scalar curvature R is instead initialized at $t=0$ and evolved forward in time by solving the differential equation (2). The latter equation involves a differential operator $\operatorname{div}_{g} \operatorname{div}_{g}$ which is somewhat easier to discretize.

To fix ideas, let us consider the setting in which Ω is a 2 -torus. Let \mathcal{T}_{h} be a triangulation of Ω with maximum element diameter h. Assume that \mathcal{T}_{h} belongs to a shape-regular, quasi-uniform family of triangulations parametrized by h. Let \mathcal{E}_{h} denote the set of edges of \mathcal{T}_{h}. Let $q \in \mathbb{N}$ and $r \in \mathbb{N}_{0}$. Define finite element spaces

$$
\begin{aligned}
V_{h} & =\left\{v \in H^{1}(\Omega)|v|_{K} \in \mathcal{P}_{q}(K), \forall K \in \mathcal{T}_{h}\right\} \\
\Sigma_{h} & =\left\{\sigma \in L^{2}(\Omega) \otimes \mathbb{S}|\sigma|_{K} \in \mathcal{P}_{r}(K) \otimes \mathbb{S}, \forall K \in \mathcal{T}_{h}, \text { and } \llbracket \tau^{T} \sigma \tau \rrbracket=0, \forall e \in \mathcal{E}_{h}\right\},
\end{aligned}
$$

where $\mathcal{P}_{r}(K)$ denotes the space of polynomials of degree $\leq r$ on $K, \llbracket \tau^{T} \sigma \tau \rrbracket$ denotes the jump in the tangential-tangential component of σ across an edge $e \in \mathcal{E}_{h}$, and $\mathbb{S}=\left\{\sigma \in \mathbb{R}^{2 \times 2} \mid \sigma=\sigma^{T}\right\}$. The space Σ_{h} is the space of Regge finite elements of degree r [13,4].

For scalar fields u and v on Ω, denote $\langle u, v\rangle_{g}=\int_{\Omega} u v \mu(g)$. For symmetric $(0,2)$-tensor fields σ and ρ defined on $K \in \mathcal{T}_{h}$, let $\langle\sigma, \rho\rangle_{g, K}=\int_{K} g^{i j} \sigma_{j k} g^{k \ell} \rho_{\ell i} \mu(g)$. For $e \in \mathcal{E}_{h}$, denote $\langle u, v\rangle_{g, e}=\int_{e} u v \sqrt{\tau^{T} g \tau} d \ell$, where τ is the unit vector tangent to e relative to the Euclidean metric δ, and $d \ell$ is the Euclidean line element along e. With $J=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, let $\tau_{g}=\tau / \sqrt{\tau^{T} g \tau}, n_{g}=J g \tau / \sqrt{\tau^{T} g \tau \operatorname{det} g}$, and $\frac{\partial v}{\partial n_{g}}=n_{g}^{T} g \nabla_{g} v$. Let $\operatorname{Hess}_{g} v$ denote the Riemannian Hessian of v.

To discretize the operator $\operatorname{div}_{g} \operatorname{div}_{g} S_{g}$ appearing in (2), we make use of the metric-dependent bilinear form

$$
b_{h}(g ; \sigma, v)=\sum_{K \in \mathcal{T}_{h}}\left\langle S_{g} \sigma, \operatorname{Hess}_{g} v\right\rangle_{g, K}+\sum_{e \in \mathcal{E}_{h}}\left\langle\tau_{g}^{T} \sigma \tau_{g}, \llbracket \frac{\partial v}{\partial n_{g}} \rrbracket\right\rangle_{g, e}
$$

This bilinear form is a non-Euclidean generalization of the bilinear form used in the classical Hellan-Herrmann-Johnson mixed discretization of the biharmonic equation [9, p. 237]. Using integration by parts, it can be shown that for smooth g, σ, and v, we have $b_{h}(g ; \sigma, v)=\int_{\Omega}\left(\operatorname{div}_{g} \operatorname{div}_{g} S_{g} \sigma\right) v \mu(g)$.

To discretize (2-3), we choose approximations $R_{h 0} \in V_{h}$ and $g_{h 0} \in \Sigma_{h}$ of R_{0} and g_{0}, respectively. We then seek $R_{h}(t) \in V_{h}$ and $g_{h}(t) \in \Sigma_{h}$ such that

$$
\begin{array}{ll}
R_{h}(0)=R_{h 0}, g_{h}(0)=g_{h 0}, \text { and } \\
\frac{\partial}{\partial t}\left\langle R_{h}, v_{h}\right\rangle_{g_{h}}=b_{h}\left(g_{h} ; \sigma_{h}, v_{h}\right), & \forall v_{h} \in V_{h} \\
\frac{\partial}{\partial t} g_{h}=\sigma_{h} \tag{5}
\end{array}
$$

where $\sigma_{h}=\sigma_{h}\left(g_{h}, R_{h}, t\right)$ is a discretization of σ. For the moment, we postpone discussing our choice of σ_{h}; this will be addressed in the next sections. We assume throughout what follows that (1) and (4-5) preserve the signature of g and g_{h}, in the sense that the eigenvalues of g and g_{h} are bounded from below by a positive constant independent of h, x, and t.

1.1 Connection with the angle defect

An important feature of (4) is its connection with the widely studied angle defect from discrete differential geometry [2,14,5]. Recall that the angle defect Θ_{i} at the $i^{t h}$ vertex $y^{(i)} \in \Omega$ of the triangulation \mathcal{T}_{h} measures the failure of the angles incident at $y^{(i)}$ to sum up to 2π :

$$
\begin{equation*}
\Theta_{i}=2 \pi-\sum_{K \in \omega_{i}} \theta_{i K} \tag{6}
\end{equation*}
$$

Here, ω_{i} denotes the set of triangles in \mathcal{T}_{h} having $y^{(i)}$ as a vertex, and $\theta_{i K}$ denotes the interior angle of K at $y^{(i)}$. The following proposition shows that in the lowest order setting ($r=0$ and $q=1$), the differential equation (4) reproduces the angle defect if $R_{h 0}$ is chosen appropriately.

Proposition 1. Let $r=0$ and $q=1$. Let $\left\{\phi_{i}\right\}_{i}$ be the basis for V_{h} satisfying $\phi_{i}\left(y^{(j)}\right)=\delta_{i}^{j}$, and let $\Theta_{i 0}$ be the angle defect at vertex $y^{(i)}$ as measured by $g_{h 0}$. If

$$
\begin{equation*}
\left\langle R_{h 0}, \phi_{i}\right\rangle_{g_{h 0}}=2 \Theta_{i 0}, \tag{7}
\end{equation*}
$$

then the solution of (4)-(5) satisfies

$$
\left\langle R_{h}(t), \phi_{i}\right\rangle_{g_{h}(t)}=2 \Theta_{i}(t)
$$

for every t, where $\Theta_{i}(t)$ is the angle defect at vertex $y^{(i)}$ as measured by $g_{h}(t)$.
Proof. It is shown in [8, Lemma 3.3] that

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(2 \Theta_{i}(t)\right)=b_{h}\left(g_{h}(t) ; \frac{\partial}{\partial t} g_{h}(t), \phi_{i}\right) \tag{8}
\end{equation*}
$$

so $2 \Theta_{i}(t)$ and $\left\langle R_{h}(t), \phi_{i}\right\rangle_{g_{h}(t)}$ obey the same ordinary differential equation.
The relation (8) is a discrete analogue of the following relation which holds in the smooth setting.

Proposition 2. Let $g(t)$ be a smooth Riemannian metric on Ω depending smoothly on t. Then, for every smooth scalar field v,

$$
\frac{\partial}{\partial t}\langle R(g(t)), v\rangle_{g(t)}=\left\langle\operatorname{div}_{g(t)} \operatorname{div}_{g(t)} S_{g(t)} \frac{\partial g}{\partial t}, v\right\rangle_{g(t)}
$$

Remark 1. The relation above is not valid in dimensions greater than 2.
Proof. We have
$\frac{\partial}{\partial t}\langle R(g(t)), v\rangle_{g(t)}=\int_{\Omega}(D R(g(t)) \cdot \sigma(t)) v \mu(g(t))+\int_{\Omega} R(g(t)) v(D \mu(g(t)) \cdot \sigma(t))$,
where $\sigma(t)=\frac{\partial}{\partial t} g(t)$. The linearizations of R and μ are given by [6, Lemma 2]

$$
\begin{aligned}
D R(g) \cdot \sigma & =\operatorname{div}_{g} \operatorname{div}_{g} \sigma-\Delta_{g}\left(g^{i j} \sigma_{i j}\right)-g^{i j} \sigma_{j k} g^{k \ell} \operatorname{Ric}_{\ell i}, \\
D \mu(g) \cdot \sigma & =\frac{1}{2} g^{i j} \sigma_{i j} \mu(g)
\end{aligned}
$$

Since Ric $=\frac{1}{2} R g$ in two dimensions and $\Delta_{g} u=\operatorname{div}_{g} \operatorname{div}_{g}(g u)$ for any scalar field u, the first expression simplifies to

$$
D R(g) \cdot \sigma=\operatorname{div}_{g} \operatorname{div}_{g} S_{g} \sigma-\frac{1}{2} R g^{i j} \sigma_{i j}
$$

Combining these gives

$$
\frac{\partial}{\partial t}\langle R(g(t)), v\rangle_{g(t)}=\int_{\Omega}\left(\operatorname{div}_{g} \operatorname{div}_{g} S_{g} \sigma\right) v \mu
$$

2 Ricci flow

Let us now focus on two-dimensional normalized Ricci flow, which corresponds to the choice $\sigma=(\bar{R}-R) g$ in (1). As before, R is the scalar curvature of g and \bar{R} is the average of R over Ω (or some other prescribed scalar function).

Several simplifications can be made in this setting. Since σ is proportional to g, we have $\operatorname{div}_{g} \operatorname{div}_{g} S_{g} \sigma=\Delta_{g}(\bar{R}-R)-2 \Delta_{g}(\bar{R}-R)=\Delta_{g}(R-\bar{R})$, so that (2) reduces to

$$
\frac{\partial}{\partial t}(R \mu)=\left(\Delta_{g}(R-\bar{R})\right) \mu
$$

This offers us some flexibility in our choice of discretization. One option is to use (4-5) as it is written, choosing σ_{h} equal to

$$
\begin{equation*}
\sigma_{h}=P_{h}\left(\left(\bar{R}_{h}-R_{h}\right) g_{h}\right), \tag{9}
\end{equation*}
$$

where P_{h} is any projector onto Σ_{h} whose domain contains $\left\{v_{h} \rho_{h} \mid v_{h} \in V_{h}, \rho_{h} \in\right.$ $\left.\Sigma_{h}\right\}$, and $\bar{R}_{h} \in V_{h}$ is equal to \bar{R} or an approximation thereof. Another option is to use the discretization

$$
\begin{align*}
\frac{\partial}{\partial t}\left\langle R_{h}, v_{h}\right\rangle_{g_{h}} & =\left\langle\nabla_{g_{h}}\left(\bar{R}_{h}-R_{h}\right), \nabla_{g_{h}} v_{h}\right\rangle_{g_{h}}, \quad \forall v_{h} \in V_{h} \tag{10}\\
\frac{\partial}{\partial t} g_{h} & =\sigma_{h} \tag{11}
\end{align*}
$$

again with σ_{h} given by (9).
The next proposition gives an example of a setting in which (4-5) and (10-11) are equivalent. In it, we denote by $z^{(e)} \in \Omega$ the midpoint of an edge $e \in \mathcal{E}_{h}$. Note that when $r=0$, the linear functionals

$$
\rho \mapsto \tau^{T} \rho\left(z^{(e)}\right) \tau, \quad e \in \mathcal{E}_{h}
$$

form a basis for the dual of Σ_{h}. We denote by $\left\{\psi_{e}\right\}_{e \in \mathcal{E}_{h}} \subset \Sigma_{h}$ the basis for Σ_{h} satisfying

$$
\tau^{T} \psi_{e}\left(z^{\left(e^{\prime}\right)}\right) \tau= \begin{cases}1, & \text { if } e=e^{\prime} \\ 0, & \text { otherwise }\end{cases}
$$

Proposition 3. Let $r=0$ and $q=1$. Let P_{h} be given by

$$
P_{h} \rho=\sum_{e \in \mathcal{E}_{h}}\left(\tau^{T} \rho\left(z^{(e)}\right) \tau\right) \psi_{e}
$$

and let σ_{h} be given by (9). Choose $R_{h 0}$ equal to the unique element of V_{h} satisfying (7) for every i. Then, with initial conditions $R_{h}(0)=R_{h 0}$ and $g_{h}(0)=g_{h 0}$, problems (4-5) and (10-11) are equivalent. Furthermore, the solution $g_{h}(t)$ satisfies

$$
\begin{equation*}
g_{h}(t)=P_{h}\left(e^{u_{h}(t)} g_{h 0}\right), \tag{12}
\end{equation*}
$$

where $u_{h}(t) \in V_{h}$ obeys the differential equation

$$
\begin{equation*}
\frac{\partial}{\partial t} u_{h}=\bar{R}_{h}-R_{h}, \quad u_{h}(0)=0 \tag{13}
\end{equation*}
$$

and the solution $R_{h}(t)$ satisfies

$$
\begin{equation*}
\left\langle R_{h}(t), \phi_{i}\right\rangle_{g_{h}(t)}=2 \Theta_{i}(t) \tag{14}
\end{equation*}
$$

for every t and every i, where $\Theta_{i}(t)$ is the angle defect at vertex $y^{(i)}$ as measured by $g_{h}(t)$.

Proof. Using the fact that functions in V_{h} are piecewise linear when $q=1$, one verifies through integration by parts that

$$
\begin{aligned}
b_{h}\left(g_{h} ; P_{h}\left(\left(\bar{R}_{h}-R_{h}\right) g_{h}\right), v_{h}\right) & =b_{h}\left(g_{h} ;\left(\bar{R}_{h}-R_{h}\right) g_{h}, v_{h}\right) \\
& =\left\langle\nabla_{g_{h}}\left(\bar{R}_{h}-R_{h}\right), \nabla_{g_{h}} v_{h}\right\rangle_{g_{h}}
\end{aligned}
$$

for every $v_{h} \in V_{h}$. This demonstrates the equivalence of (4-5) and (10-11). To deduce (12-13), observe that differentiating (12) and invoking (13) gives

$$
\begin{aligned}
\frac{\partial}{\partial t} g_{h} & =P_{h}\left(\left(\bar{R}_{h}-R_{h}\right) e^{u_{h}} g_{h 0}\right) \\
& =P_{h}\left(\left(\bar{R}_{h}-R_{h}\right) P_{h}\left(e^{u_{h}} g_{h 0}\right)\right) \\
& =P_{h}\left(\left(\bar{R}_{h}-R_{h}\right) g_{h}\right) \\
& =\sigma_{h}
\end{aligned}
$$

where the second line above follows from our choice of P_{h}. The relation (14) between $R_{h}(t)$ and the angle defect follows from Proposition 1.

2.1 Connection with other discretizations of Ricci flow

Proposition 3 reveals a close connection between the lowest-order version of our finite element discretization of Ricci flow and another popular finite difference scheme for Ricci flow [3,11]. In this popular method, (Ω, g) is discretized with a triangulation having time-dependent edge lengths $\ell_{i j}$ between adjacent vertices i and j. The scalar curvature $R(g)$ (which is twice the Gaussian curvature) is then approximated by (two times) the angle defect. The method stores a timedependent scalar u_{i} at each vertex i which evolves according to

$$
\begin{equation*}
\frac{\partial}{\partial t} u_{i}=2\left(\bar{\Theta}_{i}-\Theta_{i}\right) \tag{15}
\end{equation*}
$$

where $\bar{\Theta}_{i}$ is prescribed. (Note that in [3], (15) is expressed in terms of $r_{i}:=e^{u_{i} / 2}$ rather than u_{i}.) This collection of scalars determines the lengths $\ell_{i j}$ of all edges at time t in terms of their lengths at $t=0$ via a relation which is analogous to (12) but is motivated by circle packing theory [12] rather than finite element theory. (Other choices are also possible; see [10, Section 5] and [15] for a discussion of alternatives.)

The connection with our finite element discretization is now transparent. In the lowest order instance of our finite element discretization ($r=0$ and $q=1$), the degrees of freedom for u_{h} and g_{h} are the values of u_{h} at each vertex and the squared length of each edge as measured by g_{h}. According to equations (13) and (12), these degrees of freedom evolve in nearly the same way that u_{i} and $\ell_{i j}$ evolve in $[3,11]$.

There is one important discrepancy, however: Equation (15) is not a consistent discretization of normalized Ricci flow. This is because the angle defect (6) approximates the integral of the Gaussian curvature over a cell which is dual to vertex i, not its average over the cell. See [1, Remark B.2.4] for more insight. In many applications, this is not a serious concern, since very often the goal is not to accurately approximate Ricci flow, but rather to construct a discrete conformal mapping from a given triangulation to one with prescribed discrete curvature.

Putting this discrepancy aside, the similarities noted above suggest that our finite element method (with $r \geq 0$ and $q \geq 1$) can be loosely regarded as a highorder generalization of the scheme studied in [3,11]. A link like this does not appear to hold for some other finite element discretizations of Ricci flow such as the one studied in [7]. In particular, [7] relies on the existence of an embedding of (Ω, g) into \mathbb{R}^{3}.

3 Error Analysis

We now discuss some of our ongoing work on the analysis of the accuracy of the discretization (4-5). One setting which is particularly easy to analyze is that in which σ and σ_{h} are prescribed functions of t. Then estimates for $g_{h}-g$ are immediate, and it remains to estimate $R_{h}-R$. The following proposition
gives estimates for $R_{h}-R$ in the metric-dependent negative-order Sobolev-norm (recall that Ω has no boundary)

$$
\begin{equation*}
\|v\|_{H^{-1}(\Omega, g)}=\sup _{u \in H^{1}(\Omega)} \frac{\langle v, u\rangle_{g}}{\|u\|_{H^{1}(\Omega)}} \tag{16}
\end{equation*}
$$

In what follows, we take $\bar{R}=\bar{R}_{h}$ to be constant, we assume $r>0$, and we make use of the broken Sobolev semi-norm $|\sigma|_{H_{h}^{1}(\Omega)}=\left(\sum_{K \in \mathcal{T}_{h}}|\sigma|_{H^{1}(K)}^{2}\right)^{1 / 2}$.

Proposition 4. If σ and σ_{h} depend only on t, and if g and R are sufficiently regular, then for $T>0$ small enough, the solutions of (2-3) and (4-5) satisfy

$$
\begin{aligned}
& \left\|g_{h}(T)-g(T)\right\|_{L^{2}(\Omega)} \leq\left\|g_{h 0}-g_{0}\right\|_{L^{2}(\Omega)}+\int_{0}^{T}\left\|\sigma_{h}(t)-\sigma(t)\right\|_{L^{2}(\Omega)} d t \\
& \quad\left\|R_{h}(T)-R(T)\right\|_{H^{-1}(\Omega, g(T))} \\
& \quad \leq C\left(\int_{0}^{T}\left(h^{-1}\left\|\sigma_{h}(t)-\sigma(t)\right\|_{L^{2}(\Omega)}+\left|\sigma_{h}(t)-\sigma(t)\right|_{H_{h}^{1}(\Omega)}\right) d t\right. \\
& \left.\quad \quad \quad \inf _{u_{h} \in V_{h}}\left\|R(T)-u_{h}\right\|_{H^{-1}(\Omega, g(T))}+\left\|R_{h 0}-R_{0}\right\|_{H^{-1}(\Omega, g(T))}\right) .
\end{aligned}
$$

Proof. The estimate for $g_{h}(T)-g(T)$ is immediate, and the estimate for $R_{h}(T)-$ $R(T)$ can be obtained by extending the analysis in [8], which studies the case in which $g(t)=\frac{T-t}{T} \delta+\frac{t}{T} g(T), g_{h}(t)=\frac{T-t}{T} \delta+\frac{t}{T} g_{h}(T)$, and $R_{h 0}=R_{0}=0$.

Choosing $g_{h 0}, R_{h 0}$, and $\sigma_{h}(t)$ equal to suitable interpolants of g_{0}, R_{0}, and $\sigma(t)$, one obtains from Proposition 4 estimates of the form

$$
\begin{aligned}
\left\|g_{h}(T)-g(T)\right\|_{L^{2}(\Omega)} & \leq C h^{r+1} \\
\left\|R_{h}(T)-R(T)\right\|_{H^{-1}(\Omega, g(T))} & \leq C\left(h^{r}+h^{q+2}\right)
\end{aligned}
$$

for sufficiently regular solutions.

4 Numerical Examples

Figure 1 plots a numerical simulation of normalized Ricci flow obtained using the finite element method (4-5) with the parameter choices described in Proposition 3. Here, \mathcal{T}_{h} was taken equal to a triangulation of a 2 -sphere rather than a 2 -torus. At each instant $t \geq 0$, we visualized $g_{h}(t)$ by numerically determining an embedding of the vertices of \mathcal{T}_{h} into \mathbb{R}^{3} with the property that the distances between adjacent vertices agree with the edge lengths determined by $g_{h}(t)$.

References

1. Bobenko, A.I., Pinkall, U., Springborn, B.A.: Discrete conformal maps and ideal hyperbolic polyhedra. Geometry \& Topology 19(4), 2155-2215 (2015)

Fig. 1. Numerical solution at $t=0, t=0.05$, and $t=0.75$.
2. Cheeger, J., Müller, W., Schrader, R.: On the curvature of piecewise flat spaces. Communications in Mathematical Physics 92(3), 405-454 (1984)
3. Chow, B., Luo, F.: Combinatorial Ricci flows on surfaces. Journal of Differential Geometry 63(1), 97-129 (2003)
4. Christiansen, S.H.: On the linearization of Regge calculus. Numerische Mathematik 119(4), 613-640 (2011)
5. Crane, K., Desbrun, M., Schröder, P.: Trivial connections on discrete surfaces. In: Computer Graphics Forum. vol. 29, pp. 1525-1533. Wiley Online Library (2010)
6. Fischer, A.E., Marsden, J.E.: Deformations of the scalar curvature. Duke Mathematical Journal 42(3), 519-547 (1975)
7. Fritz, H.: Numerical Ricci-DeTurck flow. Numerische Mathematik 131(2), 241-271 (2015)
8. Gawlik, E.S.: High order approximation of Gaussian curvature with Regge finite elements. arXiv preprint arXiv:1905.07004 (2019)
9. Girault, V., Raviart, P.A.: Finite element methods for Navier-Stokes equations: Theory and algorithms. Springer-Verlag (1986)
10. Glickenstein, D.: Discrete conformal variations and scalar curvature on piecewise flat two-and three-dimensional manifolds. Journal of Differential Geometry 87(2), 201-238 (2011)
11. Jin, M., Kim, J., Luo, F., Gu, X.: Discrete surface Ricci flow. IEEE Transactions on Visualization and Computer Graphics 14(5), 1030-1043 (2008)
12. Kharevych, L., Springborn, B., Schröder, P.: Discrete conformal mappings via circle patterns. ACM Transactions on Graphics (TOG) 25(2), 412-438 (2006)
13. Li, L.: Regge Finite Elements with Applications in Solid Mechanics and Relativity. Ph.D. thesis, University of Minnesota (5 2018)
14. Regge, T.: General relativity without coordinates. Il Nuovo Cimento (1955-1965) 19(3), 558-571 (1961)
15. Springborn, B., Schröder, P., Pinkall, U.: Conformal equivalence of triangle meshes. ACM Transactions on Graphics (TOG) 27(3), 77 (2008)

[^0]: * Supported by the NSF under grant DMS-1703719.

