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Abstract

We present a finite element variational integrator for compressible flows. The numerical
scheme is derived by discretizing, in a structure preserving way, the Lie group formulation of
fluid dynamics on diffeomorphism groups and the associated variational principles. Given a
triangulation on the fluid domain, the discrete group of diffeomorphisms is defined as a certain
subgroup of the group of linear isomorphisms of a finite element space of functions. In this
setting, discrete vector fields correspond to a certain subspace of the Lie algebra of this group.
This subspace is shown to be isomorphic to a Raviart-Thomas finite element space. The resulting
finite element discretization corresponds to a weak form of the compressible fluid equation that
doesn’t seem to have been used in the finite element literature. It extends previous work
done on incompressible flows and at the lowest order on compressible flows. We illustrate the
conservation properties of the scheme with some numerical simulations.

2010 Mathematics Subject Classification: 65P10, 76M60, 37K05, 37K65.
Keywords: Structure preserving discretization, compressible fluid, finite element variational

integrator, discrete diffeomorphism group, geometric formulation of fluid dynamics

Contents

1 Introduction 2

2 Review of variational discretizations in fluid dynamics 3
2.1 Incompressible flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Compressible flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 The distributional directional derivative and its properties 7
3.1 Definition and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Relation with Raviart-Thomas finite element spaces . . . . . . . . . . . . . . . . . . 11
3.3 The lowest-order setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 The Lie algebra-to-vector fields map 15

5 Finite element variational integrator 19
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1 Introduction

Numerical schemes that respect conservation laws and other geometric structures are of paramount
importance in computational fluid dynamics, especially for problems relying on long time simula-
tion. This is the case for geophysical fluid dynamics in the context of meteorological or climate
prediction.

Schemes that preserve the geometric structures underlying the equations they discretize are
known as geometric integrators [14]. One efficient way to derive geometric integrators is to exploit
the variational formulation of the continuous equations and to mimic this formulation at the spa-
tially and/or temporally discrete level. For instance, in classical mechanics, a time discretization of
the Lagrangian variational formulation permits the derivation of numerical schemes, called varia-
tional integrators, that are symplectic, exhibit good energy behavior, and inherit a discrete version
of Noether’s theorem which guarantees the exact preservation of momenta arising from symmetries,
see [17].

Geometric variational integrators for fluid dynamics were first derived in [19] for the Euler
equations of a perfect fluid. These integrators exploit the viewpoint of [2] that fluid motions
correspond to geodesics on the group of volume preserving diffeomorphisms of the fluid domain.
The spatially discretized Euler equations emerge from an application of this principle on a finite
dimensional approximation of the diffeomorphism group. The approach has been extended to
various equations of incompressible fluid dynamics with advected quantities [11], rotating and
stratified fluids for atmospheric and oceanic dynamics [9], reduced-order models of fluid flow [16],
anelastic and pseudo-incompressible fluids on 2D irregular simplicial meshes [4], compressible fluids
[3], and compressible fluids on spheres [7]. In all of the aforementioned references, the schemes that
result are low-order finite difference schemes.

It was suggested in [16] that the variational discretization initiated in [19] can be generalized
by letting the discrete diffeomorphism group act on finite element spaces. Such an approach was
developed in [18] in the context of the ideal fluid and thus allowed for a higher order version of
the method as well as an error estimate. For certain parameter choices, this high order method
coincides with an H(div)-conforming finite element method studied in [13].

In the present paper we develop a finite element variational discretization of compressible fluid
dynamics by exploiting the recent progresses made in [3] and [18], based on the variational method
initiated in [19]. Roughly speaking, our approach is the following. Given a triangulation on the
fluid domain Ω, we consider the space V r

h ⊂ L2(Ω) of polynomials of degree ≤ r on each simplex
and define the group of discrete diffeomorphisms as a certain subgroup Grh of the general linear
group GL(V r

h ). The action of Grh on V r
h is understood as a discrete version of the action by pull

back on functions in L2(Ω). As a consequence, the action of the Lie algebra grh on V r
h is understood

as a discrete version of the derivation along vector fields. In a similar way with [19] and [3], this
interpretation naturally leads one to consider a specific subspace of grh consisting of Lie algebra
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elements that actually represent discrete vector fields. We show that this subspace is isomorphic
to a Raviart-Thomas finite element space. We also define a Lie algebra-to-vector fields map, that
allows a systematic definition of the semidiscrete Lagrangian for any given continuous Lagrangian.
The developed setting allows us to derive the finite element scheme by applying a discrete version
of the Lie group variational formulation of compressible fluids. In particular the discretization
corresponds to a weak form of the compressible fluid equation that doesn’t seem to have been used
in the finite element literature. An incompressible version of this expression of the weak form has
been used in [12] for the incompressible fluid with variable density. The setting that we develop
applies in general to 2D and 3D fluid models that can be written in Euler-Poincaré form. For
instance it applies to the rotating shallow water equations.

The plan of the paper is the following. In Section 2, we review the variational Lie group
formulation of both incompressible and compressible fluids, by recalling the Hamilton principle
on diffeomorphism groups corresponding to the Lagrangian description, and the induced Euler-
Poincaré variational principle corresponding to the Eulerian formulation. We also briefly indicate
how this formulation has been previously used to derive variational integrators. In Section 3 we
consider the distributional derivative, deduce from it a discrete derivative acting on finite element
spaces, and study its properties. In particular we show that these discrete derivatives are isomorphic
to a Raviart-Thomas finite element space. In the lower order setting, the space of discrete derivatives
recovers the spaces used in previous works, both for the incompressible [19] and compressible [3]
cases. In Section 4, we define a map that associates to any Lie algebra element of the discrete
diffeomorphism group a vector field on the fluid domain. We call such a map a Lie algebra-to-
vector fields map. It is needed to define in a general way the semidiscrete Lagrangian associated
to a given continuous Lagrangian. We study its properties, which are used later to write down
the numerical scheme. In Section 5, we derive the numerical scheme by using the Euler-Poincaré
equations on the discrete diffeomorphism group associated to the chosen finite element space. As we
will explain in detail, in a similar way with the approach initiated in [19], a nonholonomic version of
the Euler-Poincaré principle is used to constrain the dynamics to the space of discrete derivatives.
We show that such a space must be a subspace of a Brezzi-Douglas-Marini finite element space.
Finally, we illustrate the behavior of the resulting scheme in Section 6.

2 Review of variational discretizations in fluid dynamics

We begin by reviewing the variational formulation of ideal and compressible fluid flows and their
variational discretization.

2.1 Incompressible flow

The Continuous Setting. As we mentioned in the introduction, solutions to the Euler equations
of ideal fluid flow in a bounded domain Ω ⊂ Rn with smooth boundary can be formally regarded
as curves ϕ : [0, T ]→ Diffvol(Ω) that are critical for the Hamilton principle

δ

ˆ T

0
L(ϕ, ∂tϕ)dt = 0 (1)

with respect to variations δϕ vanishing at the endpoints. Here Diffvol(Ω) is the group of volume
preserving diffeomorphisms of Ω and ϕ(t) : Ω → Ω is the map sending the position X of a fluid
particle at time 0 to its position x = ϕ(t,X) at time t. The Lagrangian in (1) is given by the
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kinetic energy

L(ϕ, ∂tϕ) =

ˆ
Ω

1

2
|∂tϕ|2 dX,

and is invariant under the right action of Diffvol(Ω) on itself via composition, namely,

L(ϕ ◦ ψ, ∂t(ϕ ◦ ψ)) = L(ϕ, ∂tϕ), ∀ψ ∈ Diffvol(Ω).

This symmetry is often referred to as the particle relabelling symmetry.

As a consequence of this symmetry, the variational principle (1) can be recast on the Lie algebra
of Diffvol(Ω), which is the space Xdiv(Ω) of divergence-free vector fields on Ω with vanishing normal
component on ∂Ω. Namely, one seeks a curve u : [0, T ]→ Xdiv(Ω) satisfying the critical condition

δ

ˆ T

0
`(u) dt = 0, (2)

subject to variations δu of the form

δu = ∂tv + £uv, with v : [0, T ]→ Xdiv(Ω) and v(0) = v(T ) = 0,

where

`(u) =

ˆ
Ω

1

2
|u|2 dx,

and £uv = [u, v] = u · ∇v − v · ∇u is the Lie derivative of the vector field v along the vector field
u. This principle is obtained from the Hamilton principle (1) by using the relation ∂tϕ = u ◦ ϕ
between the Lagrangian and Eulerian velocities and by computing the constrained variations of u
induced by the free variations of ϕ. The conditions for criticality in (2) read

∂tu+ u · ∇u = −∇p,
div u = 0,

(3)

where p is a Lagrange multiplier enforcing the incompressibility constraint. The process just de-
scribed for the Euler equations is valid in general for invariant Euler-Lagrange systems on arbitrary
Lie groups and is known as Euler-Poincaré reduction. It plays an important role in this paper as it
is used also at the discrete level to derive the numerical scheme. We refer to Appendix A for more
details on the Euler-Poincaré principle and its application to incompressible flows.

The Semidiscrete Setting. The variational principle recalled above has been used to derive
structure-preserving discretizations of the incompressible Euler equations [19], and various gen-
eralizations of it have been used to do the same for other equations in incompressible fluid dy-
namics [11, 9]. In these discretizations, the group Diffvol(Ω) is approximated by a subgroup G̊h
of the general linear group GL(Vh) over a finite-dimensional vector space Vh, and extremizers of
a time-discretized action functional are sought within G̊h. More precisely, extremizers are sought
within a subspace of the Lie algebra g̊h of G̊h after reducing by a symmetry and imposing nonholo-
nomic constraints. This construction typically leads to schemes with good long-term conservation
properties.

The use of a subgroup of the general linear group to approximate Diffvol(Ω) is inspired by the
fact that Diffvol(Ω) acts linearly on the Lebesgue space L2(Ω) from the right via the pullback,

f · ϕ = f ◦ ϕ, f ∈ L2(Ω), ϕ ∈ Diffvol(Ω).
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This action satisfies
f · ϕ = f, if f is constant, (4)

and it preserves the L2-inner product 〈f, g〉 =
´

Ω fg dx thanks to volume-preservation:

〈f · ϕ, g · ϕ〉 = 〈f, g〉, ∀f, g ∈ L2(Ω). (5)

In the discrete setting, this action is approximated by the (right) action of GL(Vh) on Vh,

f · q = q−1f, f ∈ Vh, q ∈ GL(Vh).1 (6)

By imposing discretized versions of the properties (4) and (5), the group G̊h is taken equal to

G̊h = {q ∈ GL(Vh) | q1 = 1, 〈qf, qg〉 = 〈f, g〉, ∀ f, g ∈ Vh}, (7)

where 1 ∈ Vh denotes a discrete representative of the constant function 1.
While the elements of G̊h are understood as discrete versions of volume preserving diffeomor-

phisms, elements in the Lie algebra

g̊h = {A ∈ gl(Vh) | A1 = 0, 〈Af, g〉+ 〈f,Ag〉 = 0, ∀ f, g ∈ Vh} (8)

of G̊h are understood as discrete volume preserving vector fields2. Here gl(Vh) denotes the Lie
algebra of GL(Vh), given by the space of linear endomorphisms of Vh. The linear (right) action of
the Lie algebra element A ∈ g̊h on a discrete function f ∈ Vh, induced by the action (6) of Gh, is
given by

f ·A = −Af. 3 (9)

It is understood as the discrete derivative of f in the direction A.
In early incarnations of this theory, Vh is taken equal to RN , where N is the number of elements

in a triangulation of Ω, and 1 ∈ RN is the vector of all ones. In this case, we have 〈F,G〉 = FTΘG,
where Θ ∈ RN×N is a diagonal matrix whose ith diagonal entry is the volume of the ith element of
the triangulation. Hence G̊h is simply the group of Θ-orthogonal matrices with rows summing to
1.

In more recent treatments, a finite element formulation has been adopted [18]. Namely, Vh is
taken equal to a finite-dimensional subspace of L2(Ω), with the inner product inherited from L2(Ω),
and 1 is simply the constant function 1. This is the setting that we will develop to the compressible
case in the present paper.

2.2 Compressible flows

The Continuous Setting. The Lie group variational formulation recalled above generalizes to
compressible flows as follows. For simplicity we consider here only the barotropic fluid, in which
the internal energy is a function of the mass density only. The variational treatment of the general

1Note that the representation of the group diffeomorphism by pull-back on functions is naturally a right action
(f 7→ f ◦ ϕ), whereas the group GL(Vh) acts by matrix multiplication on the left (f 7→ qf). This explains the use of
the inverse q−1 on right hand side of (6).

2Strictly speaking, only a subspace of this Lie algebra represents discrete vector fields, as we will see in detail
later.

3Note the minus sign due to (6), which is consistent with the fact that f 7→ f · A is a right representation while
f 7→ Af is a left representation.
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(or baroclinic) compressible fluid is similar, see Appendix A. Consider the group Diff(Ω) of all, not
necessarily volume preserving, diffeomorphisms of Ω and the Lagrangian

L(ϕ, ∂tϕ, %0) =

ˆ
Ω

[1

2
%0|∂tϕ|2 − %0e(%0/Jϕ)

]
dX. (10)

Here %0 is the mass density of the fluid in the reference configuration, Jϕ is the Jacobian of the
diffeomorphism ϕ, and e is the specific internal energy of the fluid. The equations of evolution are
found as before from the Hamilton principle

δ

ˆ T

0
L(ϕ, ∂tϕ, %0)dt = 0, (11)

subject to arbitrary variations δϕ vanishing at the endpoints and where %0 is held fixed.
The main difference with the case of incompressible fluids recalled earlier is that the La-

grangian L is not invariant under the configuration Lie group Diff(Ω) but only under the sub-
group Diff(Ω)%0 ⊂ Diff(Ω) of diffeomorphisms that preserve %0, i.e., Diff(Ω)%0 = {ϕ ∈ Diff(Ω) |
(%0 ◦ ϕ)Jϕ = %0}, namely we have

L(ϕ ◦ ψ, ∂t(ϕ ◦ ψ), %0) = L(ϕ, ∂tϕ, %0), ∀ψ ∈ Diff(Ω)%0 , (12)

as it is easily seen from (10). Note that we only have Diff(Ω)%0-invariance because we regard the
Lagrangian as a map defined on the tangent bundle T Diff(Ω), with %0 being a fixed parameter. It
is in this way that the Lagrangian is treated in the Hamilton principle (11) and this is enough to
obtain the Eulerian description below.4

As a consequence of the symmetry (12), one can associate to L the Lagrangian `(u, ρ) in Eulerian
form, as follows

L(ϕ, ∂tϕ, %0) = `(u, ρ), with u = ∂tϕ ◦ ϕ−1, ρ = (%0 ◦ ϕ−1)Jϕ−1 (13)

and

`(u, ρ) =

ˆ
Ω

[1

2
ρ|u|2 − ρe(ρ)

]
dx. (14)

From the relations (13), the Hamilton principle (11) induces the variational principle

δ

ˆ T

0
`(u, ρ) dt = 0, (15)

with respect to variations δu and δρ of the form

δu = ∂tv + £uv, δρ = −div(ρv), with v : [0, T ]→ X(Ω) and v(0) = v(T ) = 0.

Here X(Ω) denotes the Lie algebra of Diff(Ω), which consists of vector fields on Ω, with vanishing
normal component on ∂Ω. The conditions for criticality in (15) yield the balance of fluid momentum

ρ(∂tu+ u · ∇u) = −∇p, with p = ρ2 ∂e

∂ρ
(16)

while the relation ρ = (%0 ◦ ϕ−1)Jϕ−1 yields the continuity equation

∂tρ+ div(ρu) = 0.

As in the case of incompressible flow, the process just described for the group Diff(Ω) is a special
instance of the process of Euler-Poincaré reduction. We refer to Appendix A for more details and
to §5.2 for the rotating fluid in a gravitational field.

4Full Diff(Ω)-invariance can be obtained by letting Diff(Ω) also act on %0, as L(ϕ ◦ ψ, ∂t(ϕ ◦ ψ), (%0 ◦ ψ)Jψ) =
L(ϕ, ∂tϕ, %0).
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The Semidiscrete Setting. A low-order semidiscrete variational setting has been described in
[3] that extends the work of [19, 11, 9] to the compressible case, with a particular focus on the rotat-
ing shallow water equations. It is based on the compressible version of the discrete diffeomorphism
group (7), namely

Gh = {q ∈ GL(Vh) | q1 = 1}, (17)

whose Lie algebra is
gh = {A ∈ gl(Vh) | A1 = 0}. (18)

A nonholonomic constraint is imposed in [3] to distinguish elements of gh that actually represent
discrete versions of vector fields. In this paper, we will see how this idea generalizes to the higher
order setting. The representation of gh on Vh is given as before by f 7→ f · A = −Af and is
understood as a discrete version of the derivative in the direction A.

Notice that we denote by G̊h and Gh the subgroups of GL(Vh) when the finite element space
Vh is left unspecified, similarly for the corresponding Lie algebras g̊h and gh. When it is chosen as
the space V r

h of polynomials of degree ≤ r on each simplex, we use the notations G̊rh, Grh for the
groups and g̊rh, grh for the Lie algebras.

3 The distributional directional derivative and its properties

As we have recalled above, when using a subgroup ofGL(Vh) to discretize the diffeomorphism group,
its Lie algebra gh contains the subspace of discrete vector fields. More precisely, as linear maps
in gh ⊂ gl(Vh), these discrete vector fields act as discrete derivations on Vh. Once a vector space
Vh is selected, it is thus natural to choose these discrete vector fields as distributional directional
derivatives. This choice was made in [18]. In this section we recall this definition, study its
properties and show that these derivations are isomorphic to a Raviart-Thomas finite element
space.

Let Ω be as before the domain of the fluid, assumed to be bounded with smooth boundary. We
consider the Hilbert spaces

H(div,Ω) = {u ∈ L2(Ω)n | div u ∈ L2(Ω)}
H0(div,Ω) = {u ∈ H(div,Ω) | u · n|∂Ω = 0}
H̊(div,Ω) = {u ∈ H(div,Ω) | div u = 0, u · n|∂Ω = 0}.

The notation H̊(div,Ω) is sometimes used in the literature to denote the subspace of H(div,Ω)
with the boundary condition u · n|∂Ω = 0, which is here denoted H0(div,Ω).

3.1 Definition and properties

Let Th be a triangulation of Ω having maximum element diameter h. We assume that Th belongs
to a shape-regular, quasi-uniform family of triangulations of Ω parametrized by h. That is, there
exist positive constants C1 and C2 independent of h such that

max
K∈Th

hK
ρK
≤ C1, and max

K∈Th

h

hK
≤ C2,

where hK and ρK denote the diameter and inradius of a simplex K. For r ≥ 0 an integer, we
consider the subspace of L2(Ω)

V r
h = {f ∈ L2(Ω) | f |K ∈ Pr(K), ∀K ∈ Th}, (19)
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where Pr(K) denotes the space of polynomials of degree ≤ r on a simplex K.

Definition 3.1. Given u ∈ H(div,Ω), the distributional derivative in the direction u is the
linear map ∇dist

u : L2(Ω)→ C∞0 (Ω)′ defined by

ˆ
Ω

(∇dist
u f)g dx = −

ˆ
Ω
f div(gu) dx, ∀g ∈ C∞0 (Ω). (20)

When a triangulation Th is fixed, f ∈ V r
h , and u ∈ H0(div,Ω)∩Lp(Ω)n, p > 2, the distributional

directional derivative (20) can be rewritten as

ˆ
Ω

(∇dist
u f)g dx =

∑
K∈Th

ˆ
K

(∇uf)g dx−
∑
K∈Th

ˆ
∂K

(u · n)fg ds

=
∑
K∈Th

ˆ
K

(∇uf)g dx−
∑
e∈E0h

ˆ
e
u · JfKg ds,

(21)

for all g ∈ C∞0 (Ω). Here, ∇uf = u · ∇f denotes the derivative of f along u, E0
h denotes the set of

interior (n− 1)-simplices in Th (edges in two dimensions), and JfK is defined by

JfK := f1n1 + f2n2, on e = K1 ∩K2 ∈ E0
h,

with fi := f |Ki
, n1 the normal vector to e pointing from K1 to K2, and similarly for n2.

Note that there are some subtleties that arise when looking at traces on subsets of the boundary
if the trace is a distribution, which explains why we need to take u ∈ H0(div,Ω)∩Lp(Ω)n, for some
p > 2 when passing to the second line in (21). The trace of a vector field u ∈ H(div,K) on ∂K

satisfies u · n ∈ H−1/2(∂K) = H
1/2
0 (∂K)′ = H1/2(∂K)′, but the trace of u on e ⊂ ∂K satisfies

u · n ∈ H1/2
00 (e)′, where H

1/2
00 (e) defined by

H
1/2
00 (e) = {g ∈ H1/2(e) | the zero-extension of g to ∂K belongs to H1/2(∂K)} ( H

1/2
0 (e),

see, e.g., [5]. So for u ∈ H(div,Ω) and smooth g,
´
∂K(u·n)g ds is always well-defined, but

´
e(u·n)g ds

need not be; some extra regularity for u is required to make it well-defined.

Definition 3.2. Given A ∈ gl(V r
h ) and u ∈ H0(div,Ω) ∩ Lp(Ω)n, p > 2, we say that A approxi-

mates −u in V r
h

5 if whenever f ∈ L2(Ω) and fh ∈ V r
h is a sequence satisfying ‖f − fh‖L2(Ω) → 0,

we have
〈Afh −∇dist

u f, g〉 → 0, ∀g ∈ C∞0 (Ω). (22)

In other words, we require that A is a consistent approximation of ∇dist
u in V r

h .

Note that the above definition abuses notation slightly; we are really dealing with a sequence
of A’s parametrized by h.

5The fact that A approximates −u and not u is consistent with the fact that f 7→ Af is a left Lie algebra action
whereas the derivative f 7→ ∇uf is a right Lie algebra action.
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Proposition 3.1. Given u ∈ H0(div,Ω)∩Lp(Ω)n and r ≥ 0 an integer, a consistent approximation
of ∇dist

u in V r
h is obtained by setting A = Au ∈ gl(V r

h ) defined by

〈Auf, g〉 :=
∑
K∈Th

ˆ
K

(∇uf)g dx−
∑
e∈E0h

ˆ
e
u · JfK{g}ds, ∀f, g ∈ V r

h , (23)

where {g} := 1
2(g1 + g2) on e = K1 ∩K2.

Moreover, if r ≥ 1, p = ∞, and A ∈ gl(V r
h ) is any other operator that approximates u in V r

h ,
then A must be close to Au in the following sense: if f ∈ L2(Ω), g ∈ C∞0 (Ω), and if fh, gh ∈ V r

h

satisfy ‖fh − f‖L2(Ω) → 0 and h−1‖g − gh‖L2(Ω) +
(∑

K∈Th |g − gh|
2
H1(K)

)1/2
→ 0, then

〈(A−Au)fh, gh〉 → 0,

provided that ‖Afh‖L2(Ω) ≤ C(u, f)h−1 for some constant C(u, f).

As we will see in §3.3, for r = 0, the definition of Au in (23) recovers the one used in [3]. There, a
different definition of “A approximates −u” than (22) was considered for the particular case r = 0.
When this definition is used, analogous statements of both parts of Proposition 3.1 hold for r = 0,
under an additional assumption on the family of meshes [3, Lemma 2.2].

Proof. The operator Au is a consistent approximation of ∇dist
u , since for all g ∈ C∞0 (Ω)

〈Aufh −∇dist
u f, g〉 = 〈∇dist

u (fh − f), g〉

= −
ˆ

Ω
(fh − f) div(gu)dx

≤ ‖fh − f‖L2(Ω)‖u · ∇g + g div u‖L2(Ω) → 0.

For the second part, we note that

〈Afh, gh〉 − 〈Aufh, gh〉 = 〈Afh −Aufh, g〉+ 〈Afh, gh − g〉 − 〈Aufh, gh − g〉
= 〈Afh −∇dist

u fh, g〉+ 〈Afh, gh − g〉 − 〈Aufh, gh − g〉
= 〈Afh −∇dist

u f, g〉+ 〈∇dist
u (f − fh), g〉+ 〈Afh, gh − g〉 − 〈Aufh, gh − g〉

≤ |〈Afh −∇dist
u f, g〉|+ ‖f − fh‖L2(Ω)‖div(ug)‖L2(Ω)

+ ‖Afh‖L2(Ω)‖gh − g‖L2(Ω) + |〈Aufh, gh − g〉|.

By assumption, the first three terms above tend to zero as h→ 0. The last term satisfies

〈Aufh, gh − g〉 = 〈Aufh, gh〉 − 〈∇dist
u fh, g〉

=
∑
K∈Th

ˆ
K

(∇ufh)(gh − g) dx−
∑
e∈E0h

ˆ
e
u · JfhK{gh − g}ds

since {g} = g on each e ∈ E0
h. To analyze these integrals, we make use of the inverse estimate [10]

|fh|H1(K) ≤ Ch−1
K ‖fh‖L2(K), ∀fh ∈ V r

h , ∀K ∈ Th,

and the trace inequality [1]

‖f‖L2(∂K) ≤ C
(
h
−1/2
K ‖f‖L2(K) + h

1/2
K |f |H1(K)

)
, ∀f ∈ H1(K), ∀K ∈ Th.
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Using the inverse estimate, we see that∣∣∣∣ˆ
K

(∇ufh)(gh − g) dx

∣∣∣∣ ≤ ‖u‖L∞(Ω)|fh|H1(K)‖gh − g‖L2(K)

≤ Ch−1
K ‖u‖L∞(Ω)‖fh‖L2(K)‖gh − g‖L2(K).

Using the trace inequality and the inverse estimate, we see also that∣∣∣∣ˆ
e
u · JfhK{gh − g} ds

∣∣∣∣
≤ 1

2
‖u‖L∞(Ω)

(
‖fh1‖L2(e) + ‖fh2‖L2(e)

) (
‖gh1 − g1‖L2(e) + ‖gh2 − g2‖L2(e)

)
≤ C‖u‖L∞(Ω)

(
h
−1/2
K1
‖fh‖L2(K1) + h

−1/2
K2
‖fh‖L2(K2)

)
×
(
h
−1/2
K1
‖gh − g‖L2(K1) + h

1/2
K1
|gh − g|H1(K1) + h

−1/2
K2
‖gh − g‖L2(K2) + h

1/2
K2
|gh − g|H1(K2)

)
,

where K1,K2 ∈ Th are such that e = K1 ∩K2, fhi = fh|Ki
, ghi = gh|Ki

, and gi = g|Ki
. Summing

over all K ∈ Th and all e ∈ E0
h, and using the quasi-uniformity of Th, we get

|〈Aufh, gh − g〉| ≤ C‖u‖L∞(Ω)‖fh‖L2(Ω)

(
h−1‖gh − g‖L2(Ω) +

( ∑
K∈Th

|g − gh|2H1(K)

)1/2)
→ 0.

Note that formula (23) for Au is obtained from formula (21), valid for f ∈ V r
h and g ∈ C∞0 (Ω),

by rewriting it for the case where g ∈ V r
h and choosing to replace g → {g} in the second term in

(21).

Proposition 3.2. For all u ∈ H0(div,Ω) ∩ Lp(Ω), p > 2, we have

Au1 = 0 and 〈Auf, g〉+ 〈f,Aug〉+ 〈f, (div u)g〉 = 0, ∀f, g ∈ V r
h . (24)

Hence, if u ∈ H̊(div,Ω), then

Au1 = 0 and 〈Auf, g〉+ 〈f,Aug〉 = 0, ∀f, g ∈ V r
h . (25)

Proof. The first property Au1 = 0 follows trivially from the expression (23) since ∇u1 = 0 and
J1K = 0. We now prove the second equality. Using (23) and JfgK = JfK{g}+ JgK{f}, we compute

〈Auf, g〉+ 〈f,Aug〉

=
∑
K∈Th

ˆ
K

((∇uf)g + (∇ug)f) dx−
∑
e∈E0h

ˆ
e
u · (JfK{g}+ JgK{f}) ds

=
∑
K∈Th

ˆ
K
∇u(fg) dx−

∑
e∈E0h

ˆ
e
u · JfgK ds

=
∑
K∈Th

(ˆ
K
∇u(fg) dx−

ˆ
∂K

(u · n)fg ds

)
= −

∑
K∈Th

ˆ
K

(div u)fg dx

= −
ˆ

Ω
(div u)fg dx.
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From the previous result, we get a well-defined linear map

A : H0(div,Ω) ∩ Lp(Ω)n → grh ⊂ gl(V r
h ), u 7→ A(u) = Au, p > 2, (26)

with values in the Lie algebra grh = {A ∈ gl(V r
h ) | A1 = 0} of Gh. In the divergence free case, it

restricts to
A : H̊(div,Ω) ∩ Lp(Ω)n → g̊rh ⊂ gl(V r

h ),

with g̊rh = {A ∈ gl(V r
h ) | A1 = 0, 〈Af, g〉+ 〈f,Ag〉 = 0, ∀f, g ∈ V r

h } the Lie algebra of G̊h, see (7),
which recovers the map considered in [18].

We have defined the discrete diffeomorphism group by considering its action on discrete func-
tions. Alternatively, it is also possible to define it by considering the action on discrete densities,
see Remark 5.2.

3.2 Relation with Raviart-Thomas finite element spaces

Definition 3.3. For r ≥ 0 an integer, we define the subspace Srh ⊂ grh ⊂ gl(V r
h ) as

Srh := ImA = {Au ∈ gl(V r
h ) | u ∈ H0(div,Ω)}.

Proposition 3.3. Let r ≥ 0 be an integer. The space Srh ⊂ grh is isomorphic to the Raviart-Thomas
space of order 2r

RT2r(Th) = {u ∈ H0(div,Ω) | u|K ∈ (P2r(K))n + xP2r(K), ∀K ∈ Th} .

An isomorphism is given by u ∈ RT2r(Th) 7→ Au ∈ Srh.
Its inverse is given by

A ∈ Srh 7→ u =
∑
K∈Th

∑
α

φαK
∑
j

〈Afα,jK , gα,jK 〉+
∑
e∈E0h

∑
β

φβe
∑
j

〈Afβ,je , gβ,je 〉 ∈ RT2r(Th). (27)

In this formula:

• (fα,jK , gα,jK ), (fβ,je , gβ,je ) ∈ V r
h × V r

h are such that the images of
∑

j(f
α,j
K , gα,jK ) ∈ V r

h ⊗ V r
h and∑

j(f
β,j
e , gβ,je ) ∈ V r

h ⊗ V r
h under the map

V r
h ⊗ V r

h → RT2r(Th)∗, f ⊗ g 7−→
∑
K∈Th

(∇f g)|K +
∑
e∈E0h

JfKe{g}e (28)

are (pαK , 0) and (0, pβe ), respectively, which is a basis of the dual space RT2r(Th)∗ adapted to
the decomposition

RT2r(Th)∗ =
∑
K∈Th

P2r−1(K)n ⊕
∑
e∈E0h

P2r(e);

• φαK , φβe is a basis of RT2r(Th) dual to the basis pαK and pβe of RT2r(Th)∗.

Proof. Let us consider the linear map A : H0(div,Ω) ∩ Lp(Ω)n → gl(V r
h ) defined in (26). From

a general result of linear algebra, we have dim(ImA) = dim(ImA∗), where A∗ : gl(V r
h )∗ →

(H0(div,Ω) ∩ Lp(Ω)n)∗ is the adjoint to A. We have

ImA∗ =

{
N∑
i=1

ciσfigi ∈ (H0(div,Ω) ∩ Lp(Ω)n)∗
∣∣∣ N ∈ N, fi, gi ∈ V r

h , ci ∈ R, i = 1, 2, . . . , N

}
,
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where the linear form σfg := A∗(f ⊗ g) : H0(div,Ω) ∩ Lp(Ω)n → R, is given by σfg(u) = 〈f,Aug〉.
Now, the space ImA∗ is spanned by functionals of the form

u 7→
ˆ
e
(u · n)pq ds, p, q ∈ Pr(e), e ∈ E0

h, (29)

and

u 7→
ˆ
K

(u · ∇q)p dx p, q ∈ Pr(K), K ∈ Th. (30)

This can be seen by choosing appropriate f and g in σfg and using the definition (23) of Au. Indeed,
if we choose two adjacent simplices K1 and K2 and set f |K1

= p ∈ Pr(K1), g|K2
= −2q ∈ Pr(K2),

f |Ω\K1
= 0, and g|Ω\K2

= 0, we get 〈f,Aug〉 =
´
e(u · n)pq ds with e = K1 ∩K2. Likewise, if we

choose a simplex K and set f |K = p ∈ Pr(K), g|K = q ∈ Pr(K), and f |Ω\K = g|Ω\K = 0, we get

〈f,Aug〉 =
´
K(u · ∇q)p dx − 1

2

´
∂K(u · n)pq ds. Taking appropriate linear combinations yields the

functionals (29-30).
Now observe that the functionals (29-30) span the same space (see Lemmas C.1 and C.2 in

Appendix C) as the functionals

u 7→
ˆ
e
(u · n)pds, p ∈ P2r(e), e ∈ E0

h,

and

u 7→
ˆ
K
u · pdx p ∈ P2r−1(K)n, K ∈ Th.

These functionals are well-known [8]: they are a basis for the dual of

RT2r(Th) = {u ∈ H(div,Ω) | u · n|∂Ω = 0, u|K ∈ (P2r(K))n + xP2r(K), ∀K ∈ Th},

often referred to as the “degrees of freedom” for RT2r(Th).
We thus have proven that ImA∗ is isomorphic to RT2r(Th)∗, and hence Srh = ImA is isomorphic

to RT2r(Th), all these spaces having the same dimensions. Now, let us consider the linear map
u ∈ RT2r(Th)→ A(u) = Au ∈ Srh. Since its kernel is zero, the map is an isomorphism.

Consider now a basis pαK , pβe of the dual space RT2r(Th)∗ identified with
∑

K∈Th P2r−1(K)n ⊕∑
e∈E0h

P2r(e), i.e., the collection {pαK} is a basis of
∑

K∈Th P2r−1(K)n and the collection {pβe } is a

basis of
∑

e∈E0h
P2r(e). There is a dual basis φαK , φβe of RT2r(Th) such that

〈(pαK , 0),φα
′
K′〉 = δαα′δKK′ 〈(pαK , 0),φβe 〉 = 0

〈(0, pβe ),φβ
′

e′ 〉 = δββ′δee′ 〈(0, pβe ),φαK〉 = 0,

where

〈(p, p), u〉 =
∑
K∈Th

ˆ
K
u · p dx+

∑
e∈E0h

ˆ
e
(u · n)pds

is the duality pairing between RT2r(Th)∗ and RT2r(Th).

Choosing fα,jK , gα,jK ∈ V r
h and fβ,je , gβ,je ∈ V r

h such that∑
j

∇fα,jK gα,jK |K′ = pαKδKK′ ,
∑
j

Jfα,jK Ke{gα,jK }e = 0,
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∑
j

∇fβ,je gβ,je |K = 0,
∑
j

Jfβ,je Ke′{gβ,je }e′ = pβe δee′ ,

we have that ∑
j

〈Aufα,jK , gα,jK 〉 and
∑
j

〈Aufβ,je , gβ,je 〉

are exactly the degrees of freedom of u relative to the basis pαK , pβe . Therefore, u is expressed as

u =
∑
K∈Th

∑
α

φαK
∑
j

〈Aufα,jK , gα,jK 〉+
∑
e∈E0h

∑
β

φβe
∑
j

〈Aufβ,je , gβ,je 〉

as desired.

Note that the map (28), with V r
h ⊗ V r

h identified with gl(V r
h )∗ can be identified with the com-

position I∗ ◦ A∗, where I∗ is the dual map to the inclusion I : RT2r(Th) → H0(div,Ω) ∩ Lp(Ω)n.
This map is surjective, from the preceding result.

Proposition 3.4. The kernel of the map u ∈ H0(div,Ω) ∩ Lp(Ω)n 7→ A(u) = Au ∈ gl(V r
h ), p > 2,

is
kerA = {u ∈ H0(div,Ω) ∩ Lp(Ω) | Π2r(u) = 0} = ker Π2r,

where Π2r : H0(div,Ω)∩Lp(Ω)n → RT2r(Th) is the global interpolation operator defined by Π2r(v)|K :=
ΠK

2r(v|K), with ΠK
2r : H(div,K) ∩ Lp(K)n → RT2r(K) defined by the two conditions

ˆ
e

(
(u−ΠK

2ru) · n
)
p ds = 0, for all p ∈ P2r(e), for all e ∈ K

and ˆ
K

(u−ΠK
2ru) · p dx = 0, for all p ∈ P2r−1(K)n.

Proof. For u ∈ H0(div,Ω) ∩ Lp(Ω)n we have Au = 0 if and only if 〈Auf, g〉 = 0 for all f, g ∈ V r
h .

As we just commented above, the map (28) is surjective, hence from (23) we see that 〈Auf, g〉 = 0
for all f, g ∈ V r

h holds if and only if

ˆ
e
(u · n)p ds = 0, for all p ∈ P2r(e), e ∈ E0

h,

and ˆ
K
u · p dx = 0, for all p ∈ P2r−1(K)n, K ∈ Th.

This holds if and only if Π2r(u) = 0.

In particular for u ∈ H0(div,Ω) ∩ Lp(Ω), p > 2, there exists a unique ū ∈ RT2r(Th) such that
Aū = Au. It is given by ū = Π2r(u).
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3.3 The lowest-order setting

We now investigate the setting in which r = 0 in order to connect with the previous works [19] and
[3] for both the incompressible and compressible cases. Enumerate the elements of Th arbitrarily
from 1 to N , and let {ψi}i be the orthogonal basis for V 0

h given by

ψi(x) =

{
1, if x ∈ Ki,

0, otherwise,

where Ki ∈ Th denotes the ith element of Th. Relative to this basis, for A ∈ g0
h ⊂ gl(V 0

h ) we have

A
( N∑
j=1

fjψj

)
=

N∑
i=1

( N∑
j=1

Aijfj

)
ψi, ∀f =

N∑
j=1

fjψj ∈ Vh,

where

Aij =
〈ψi, Aψj〉
〈ψi, ψi〉

=
1

|Ki|
〈ψi, Aψj〉. (31)

In what follows, we will abuse notation by writing A for both the operator A ∈ g0
h and the

matrix A ∈ RN×N with entries (31). It is immediate from (8) that

g̊0
h =

{
A ∈ RN×N

∣∣∣ N∑
j=1

Aij = 0, ∀i, and ATΘ + ΘA = 0
}
, g0

h =
{
A ∈ RN×N

∣∣∣ N∑
j=1

Aij = 0
}

where Θ is a diagonal N ×N matrix with diagonal entries Θii = |Ki|. These are the Lie algebras
used in [19] and [3].

The next lemma determines the subspace S0
h := ImA in the case r = 0. We write j ∈ N(i) to

indicate that j 6= i and Ki ∩Kj is a shared (n− 1)-dimensional simplex.

Lemma 3.5. If A = −Au for some u ∈ H0(div,Ω) ∩ Lp(Ω)n, p > 2, then, for each i,

Aij = − 1

2|Ki|

ˆ
Ki∩Kj

u · n ds, j ∈ N(i),

Aii =
1

2|Ki|

ˆ
Ki

div u dx,

(32)

and Aij = 0 for all other j.

Proof. Let j ∈ N(i) and consider the expression (23) with f = ψj and g = ψi. All terms vanish
except one, giving

〈Aψj , ψi〉 =

ˆ
Ki∩Kj

u · JψjK{ψi} ds

= −1

2

ˆ
Ki∩Kj

u · n ds.
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Now consider the case in which i = j. Let E0(Ki) denote the set of (n − 1)-simplices that are on
the boundary of Ki but in the interior of Ω. Since u · n = 0 on ∂Ω,

〈Aψi, ψi〉 =
∑

e∈E0(Ki)

ˆ
e
u · JψiK{ψi}ds,

=

ˆ
∂Ki

u · n1

2
ds

=
1

2

ˆ
Ki

div udx.

The expressions in (32) follow from (31). Finally, if j 6= i and j /∈ N(i), then all terms in (23)
vanish when f = ψj and g = ψi.

Remark 3.1. The expressions in (32) recover the relations between Lie algebra elements and vector
fields used in [19] and [3]. In particular, in the incompressible case, using also (25) in Proposition
3.2, we have

ImA =
{
A ∈ g̊0

h | Aij = 0, ∀j /∈ N(i)
}

which is the nonholonomic constraint used in [19]. Similarly, in the compressible case, using (24)
in Proposition 3.2, we have

ImA =
{
A ∈ g0

h | Aij = 0, ∀j /∈ N(i) ∪ {i}, ATΘ + ΘA is diagonal
}

which is the nonholonomic constraint used in [3]. By Proposition 3.3, we have ImA ' RT2r(Th) =
RT0(Th) in the compressible case. This is reflected in (32): every nonzero off-diagonal entry of
A ∈ ImA corresponds to a degree of freedom

´
e(u · n)ds, e ∈ E0

h, for RT0(Th) (and every diagonal
entry of A is a linear combination thereof).

4 The Lie algebra-to-vector fields map

In this section we define a Lie algebra-to-vector fields map that associates to a matrix A ∈ gl(V r
h )

a vector field on Ω. Such a map is needed to define in a general way the semidiscrete Lagrangian
associated to a given continuous Lagrangian.

Since any A ∈ Srh is associated to a unique vector field u ∈ RT2r(Th), one could think that the
correspondence A ∈ Shr → u ∈ RT2r(Th) can be used as a Lie algebra-to-vector fields map. However,
as explained in detail in Appendix B, the Lagrangian must be defined on a larger space than the
constraint space Srh, namely, at least on Srh + [Srh, S

r
h]. This is why such a Lie algebra-to-vector

fields map is needed.

Definition 4.1. For r ≥ 0 an integer, we consider the Lie algebra-to-vector field map ̂ : gl(V r
h )→

[V r
h ]n defined by

Â :=
n∑
k=1

A(Irh(xk))ek, (33)

where Irh : L2(Ω) → V r
h is the L2-orthogonal projector onto V r

h , xk : Ω → R are the coordinate
maps, and ek the canonical basis for Rn. When r ≥ 1, Irh(xk) = xk, whereas I0

h(xk) equals the kth

component of the barycenter on each K. For r ≥ 1 this map was considered in [18].
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The idea leading to the definition (33) is the following. On one hand the component uk of a
general vector field u =

∑
k u

kek, can be understood as the derivative of the coordinate function
xk in the direction u, i.e. uk = ∇uxk. On the other hand, from the definition of the discrete
diffeomorphism group, the linear map f 7→ Af for f ∈ V r

h is understood as a derivation, hence (33)
is a natural candidate for a Lie algebra-to-vector field map. We shall study its properties below,
after describing in more detail in the next lemma the expression (33) for r = 0.

Lemma 4.1. For r = 0 and A ∈ g0
h ⊂ gl(V 0

h ), Â is the vector field constant on each simplex, given
on simplex Ki by

Â|Ki =
∑
j

(bj − bi)Aij , (34)

where bi = 1
|Ki|
´
Ki
x dx denotes the barycenter of Ki.

Proof. The L2-projection of the coordinate function xk onto Vh is given by

I0
h(xk) =

∑
j

ψj
1

|Kj |

ˆ
Kj

xk =
∑
j

ψjb
k
j ,

where bkj denotes the kth component of bj . Hence,

Â =
n∑
k=1

(A(Ihx
k))ek =

n∑
k=1

∑
j

bkj ekAψj =
∑
j

bjAψj

=
∑
j

bj
∑
i

Aijψi =
∑
i

ψi
∑
j

bjAij =
∑
i

ψi
∑
j

(bj − bi)Aij ,

where the last equality follows from the fact that
∑

j Aij = 0 for every i.

Proposition 4.2. For u ∈ H0(div,Ω) ∩ Lp(Ω), p > 2 and r ≥ 0, we consider Au ∈ gl(V r
h ) defined

in (23).

• If r ≥ 1, then for all u ∈ H0(div,Ω) ∩ Lp(Ω), p > 2, we have

(Âu)k = Irh(uk), k = 1, ..., n.

In particular, if u is such that u|K ∈ Pr(K)n for all K, then Âu = u.

• If r = 0, then

Âu|K =
1

2|K|
∑
e∈K

ˆ
e
u · ne−(be+ − be−)ds

where ne− is the normal vector field pointing from K− to K+ and be± are the barycenters of
K±. In particular, if u ∈ RT0(Th), then

Âu|K =
1

2|K|
∑
e∈K
|e|u · ne−(be+ − be−).

More particularly, if u|K ∈ P0(K)n for all K and the triangles are regular

Âu = u.
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As a consequence, we also note that for r ≥ 1 and u ∈ H0(div,Ω) ∩ Lp(Ω), p > 2 :

Âu = u ⇔ u|K ∈ Pr(K)n, ∀K.

Proof. When r ≥ 1, we have Irh(xk) = xk, hence Âu(x) =
∑n

k=1(Aux
k)(x)ek. We compute Aux

k ∈
V r
h as follows: for all g ∈ V r

h , we have

〈Auxk, g〉 =
∑
K∈Th

ˆ
K

(∇xk · u)gdx−
∑
e∈E0h

ˆ
e
u · JxkKe{g}eds =

ˆ
Ω
ukgdx.

Since this is true for all g ∈ V r
h and since Aux

k must belong to V r
h , we have

(Âu)k = Aux
k = Irh(uk),

as desired.
When r = 0, we have I0

h(f)|Ki = 1
|Ki|
´
Ki
f(x)dx hence I0

h(xk)|Ki = (bi)
k. We compute

AuI
0
h(xk) ∈ V 0

h as follows: for all g ∈ V 0
h , we have

〈AuI0
h(xk), g〉 =

∑
Ki∈Th

ˆ
Ki

(∇(bi)
k · u)gdx−

∑
e∈E0h

ˆ
e
u ·
(
bke+ne+ + bke−ne−

)
{g}eds

= 0−
∑
e∈E0h

ˆ
e
u ·
(
bke+ne+ + bke−ne−

) 1

2
(ge+ + ge−)ds

= −
∑
e∈E0h

ˆ
e
u ·
(
bke+ne+ + bke−ne−

)
ds

(
1

2|Ke+ |

ˆ
Ke+

gdx+
1

2|Ke− |

ˆ
Ke−

gdx

)

= −
∑
K∈Th

∑
e∈K

ˆ
e
u ·
(
bke+ne+ + bke−ne−

)
ds

1

2|K|

ˆ
K
gdx

hence we get

AuI
0
h(xk)|K =

1

2|K|
∑
e∈K

ˆ
e
u · ne−

(
bke+ − b

k
e−

)
ds

from which the result follows. This result can be also obtained by combining the results of Propo-
sition 3.5 and Lemma 4.1.

In 2D, for the case of a regular triangle, we have be+ − be− = ne−
2
3H, where H is the height,

and |K| = 1
2 |e|H so we get

Âu|K =
1

2|K|
2

3
H
∑
e∈K
|e|(u · ne−)ne− =

2

3

∑
e∈K

(u · ne−)ne− = u

if u|K ∈ P0(K)n. Similar computations hold in 3D.

Proposition 4.3. For all u, v ∈ H0(div,Ω) ∩ Lp(Ω), p > 2, and r ≥ 1, we have

〈 ̂[Au, Av]
k
, g〉 =

∑
K∈Th

ˆ
K

(∇v̄k · u−∇ūk · v)gdx−
∑
e∈E0h

ˆ
e

(
u · n[v̄k]− v · n[ūk]

)
{g}ds,
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for k = 1, ..., n, for all g ∈ V r
h , where ūk = Irh(uk) ∈ V r

h and v̄k = Irh(vk) ∈ V r
h . The convention is

such that if n is pointing from K− to K+, then [v̄k] = v̄k− − v̄k+.
So, in particular if u|K , v|K ∈ Pr(K), then

〈 ̂[Au, Av]
k
, g〉 =

∑
K∈Th

ˆ
K

[u, v]kgdx−
∑
e∈E0h

ˆ
e

(
u · n[vk]− v · n[uk]

)
{g}ds.

If u, v, w ∈ H0(div,Ω) ∩ Lp(Ω), p > 2 and u|K , v|K , w|K ∈ Pr(K), we have

ˆ
Ω

̂[Au, Av] · Âw dx =

n∑
k=1

〈 ̂[Au, Av]
k
, Âw

k
〉

=
∑
K∈Th

ˆ
K

[u, v] · w dx−
∑
e∈E0h

ˆ
e
(n× {w}) · [u× v]ds.

For r = 0, and u, v ∈ H0(div,Ω) ∩ Lp(Ω), p > 2 such that u|K , v|K ∈ P0(K), then ̂[Au, Av] ∈
[V 0
h ]n is the vector field constant on each simplex K, given on K by

̂[Au, Av]|K =
1

2|K|
∑
e∈K
|e|
(
u · ne−(c[v]e+ − c[v]e−)− v · ne−(c[u]e+ − c[u]e−)

)
,

where c[u] ∈ [V 0
h ]n is the vector field constant on each simplex K, given on K by

c[u]K =
1

2|K|
∑
e∈K
|e|u · ne−(be+ − be−)

similarly for c[v] ∈ [V 0
h ]n.

Proof. We note that from Proposition 4.2,

̂[Au, Av]
k

= Au(Avx
k)−Av(Auxk) = AuI

r
h(vk)−AvIrh(uk) = Auv̄

k −Avūk.

for all u, v ∈ H0(div,Ω) ∩ Lp(Ω), p > 2. Then, using (23), we have for all g ∈ V r
h :

〈Auv̄k, g〉 =
∑
K∈Th

ˆ
K

(∇v̄k · u)gdx−
∑
e∈E0h

ˆ
e
u · Jv̄kK{g}ds

similarly for 〈Avūk, g〉 from which we get the first formula.

The second formula follows when u|K , v|K ∈ Pr(K) since in this case u = ū, v = v̄.

For the third formula we choose g = Âw
k

= w̄k in the first formula and sum over k = 1, ..., n to
get

ˆ
Ω

̂[Au, Av] · Âw dx =

n∑
k=1

〈 ̂[Au, Av]
k
, Âw

k
〉

=
∑
K∈Th

ˆ
K

(∇v̄ · u−∇ū · v) · w̄ dx

−
∑
e∈E0h

ˆ
e

(
u · n [v̄]− v · n [ū]

)
· {w̄}ds.
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So far we only used u, v, w ∈ H0(div,Ω)∩Lp(Ω), p > 2. Now we assume further that u|K , v|K , w|K ∈
Pr(K) for all K, so we have ū = u, v̄ = v, w̄ = w, u ·n = {u} ·n, v ·n = {v} ·n, [v̄] ·n = [ū] ·n = 0.
Using some vector calculus identities for the last term, we getˆ

Ω

̂[Au, Av] · Âw dx =
∑
K∈Th

ˆ
K

[u, v] · w dx−
∑
e∈E0h

ˆ
e
(n× {w}) · ({u} × [v] + [u]× {v})ds.

which yields the desired formula since [u× v] = {u} × [v] + [u]× {v}.

For r ≥ 1 the above result is the compressible version of Theorem 3.13 in [18].

5 Finite element variational integrator

In this section we derive the variational discretization for compressible fluids by using the setting
developed so far. We focus on the case in which the Lagrangian depends only on the velocity and
the mass density, since the extension to a dependence on the entropy density is straightforward,
see §6 and Appendix A.

5.1 Semidiscrete Euler-Poincaré equations

Given a continuous Lagrangian `(u, ρ) expressed in terms of the Eulerian velocity u and mass
density ρ, the associated discrete Lagrangian `d : grh × V r

h → R is defined with the help of the Lie
algebra-to-vector fields map as

`d(A,D) := `(Â,D), (35)

where D ∈ V r
h is the discrete density. Exactly as in the continuous case, the right action of Grh on

discrete densities is defined by duality as

〈D · q, E〉 = 〈D, qE〉, ∀E ∈ V r
h . (36)

The corresponding action of grh on D is given by

〈D ·B,E〉 = 〈D,BE〉, ∀E ∈ V r
h . (37)

The semidiscrete equations are derived by mimicking the variational formulation of the contin-
uous equations, namely, by using the Euler-Poincaré principle applied to `d. As we have explained
earlier, only the Lie algebra elements in ImA = Srh actually represent a discretization of continuous
vector fields. Following the approach initiated [19] this condition is included in the Euler-Poincaré
principle by imposing Srh as a nonholonomic constraint, and hence applying the Euler-Poincaré-
d’Alembert recalled in Appendix B. As we will see later, one needs to further restrict the constraint
Srh to a subspace ∆R

h ⊂ Srh.

For a given constraint ∆R
h ⊂ grh, a given Lagrangian `d, and a given duality pairing 〈〈K,A〉〉

between elements K ∈ (grh)∗ and A ∈ grh, the Euler-Poincaré-d’Alembert principle seeks A(t) ∈ ∆R
h

and D(t) ∈ V r
h such that

δ

ˆ T

0
`d(A,D)dt = 0, for δA = ∂tB + [B,A] and δD = −D ·B,

for all B(t) ∈ ∆R
h with B(0) = B(T ) = 0. The expressions for δA and δB are deduced from the

relations A(t) = q̇(t)q(t)−1 and D(t) = D0 · q(t)−1, with D0 the initial value of the density, as in
the continuous case.
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The critical condition associated to this principle is〈〈
∂t
δ`d
δA

,B
〉〉

+
〈〈δ`d
δA

, [A,B]
〉〉

+
〈δ`d
δD

,D ·B
〉

= 0, ∀ t ∈ (0, T ), ∀ B ∈ ∆R
h , (38)

or, equivalently,

∂t
δ`d
δA

+ ad∗A
δ`d
δA
− δ`d
δD
�D ∈ (∆R

h )◦, ∀t ∈ (0, T ). (39)

The differential equation for D follows from differentiating D(t) = D0 · q(t)−1 to obtain ∂tD =
−D ·A, or, equivalently,

〈∂tD,E〉+ 〈D,AE〉 = 0, ∀t ∈ (0, T ), ∀ E ∈ V r
h . (40)

We refer to Appendix B for more details and the explanation of the notations. The extension of (38)
and (39) to the case when the Lagrangian depends also on the entropy density is straightforward
but important, see §6.

As explained in Appendix B, a sufficient condition for (38) to be a solvable system for T small
enough is that the map

A ∈ ∆R
h →

δ`d
δA

(A,D) ∈ (grh)∗/(∆R
h )◦ (41)

is a diffeomorphism for all D ∈ V r
h strictly positive.

5.2 The compressible fluid

We now focus on the compressible barotropic fluid, whose continuous Lagrangian is given in (14).
Following (35), we have the discrete Lagrangian

`d(A,D) := `(Â,D) =

ˆ
Ω

[1

2
D|Â|2 −De(D)

]
dx. (42)

In order to check condition (41), we shall compute the functional derivative δ`d
δA . We have〈〈δ`d

δA
, δA

〉〉
=

ˆ
Ω
DÂ · δ̂Adx =

ˆ
Ω
Irh(DÂ) · δ̂Adx =

〈〈
Irh(DÂ)[, δA

〉〉
where we defined the linear map [ : ([V r

h ]n)∗ = [V r
h ]n → (grh)∗ as the dual map to ̂ : grh → [V r

h ]n,
namely

〈〈α[, A〉〉 = 〈α, Â〉, ∀α ∈ [V r
h ]n, A ∈ grh.

We thus get δ`d
δA = Irh(DÂ)[ and note that the choice ∆R

h = Srh is not appropriate since the linear

map A ∈ Srh 7→ Irh(DÂ)[ ∈ (grh)∗/(Srh)◦ is not an isomorphism. We thus need to restrict the
constraint Srh to a subspace ∆R

h ⊂ Srh such that

A ∈ ∆R
h 7→ Irh(DÂ)[ ∈ (grh)∗/(∆R

h )◦ (43)

becomes an isomorphism, for all D ∈ V r
h strictly positive. We shall denote by Rh the subspace of

RT2r(Th) corresponding to ∆R
h via the isomorphism u ∈ RT2r(Th) 7→ Au ∈ Srh shown in Proposition
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3.3. The diagram below illustrates the situation that we consider.

H0(div,Ω)1
2

A // Srh
1
2
� � // grh

̂ // [V r
h ]n

RT2r(Th)1
2

?�

OO

yy

99

∆R
h

1
2

?�

OO

Rh
1
2

?�

OO

yy

99

The kernel of (43) is computed as

{A ∈ ∆R
h | Irh(DÂ)[ ∈ (∆R

h )◦} = {A ∈ ∆R
h | 〈〈Irh(DÂ)[, B〉〉 = 0, ∀B ∈ ∆R

h }

= {A ∈ ∆R
h | 〈Irh(DÂ), B̂〉 = 0, ∀B ∈ ∆R

h }
= {Au ∈ ∆R

h | 〈Irh(DIrh(u)), Irh(v)〉 = 0, ∀v ∈ Rh}
= {Au ∈ ∆R

h | 〈DIrh(u), Irh(v)〉 = 0, ∀v ∈ Rh}.

We note that since A,B ∈ ∆R
h ⊂ Srh, we have A = Au and B = Bv for unique u, v ∈ Rh ⊂ RT2r(Th)

by Proposition 3.3, so the kernel is isomorphic to the space

{u ∈ Rh | 〈DIrh(u), Irh(v)〉 = 0, ∀v ∈ Rh}. (44)

This space is zero if and only if Rh is a subspace of [V r
h ]n ∩H0(div,Ω) = BDMr(Th), the Brezzi-

Douglas-Marini finite element space of order r. Indeed, in this case the space (44) can be rewritten
as

{u ∈ Rh | 〈Du, v〉 = 0, ∀v ∈ Rh} = {0}

since D is strictly positive (it suffices to take v = u). Conversely, if there exists a nonzero w ∈
Rh \BDMr(Th), then u := w − Irh(w) 6= 0 satisfies Irh(u) = 0, showing that (44) is nonzero.

Using the expressions of the functional derivatives

δ`d
δA

= Irh(DÂ)[,
δ`d
δD

= Irh

(1

2
|Â|2 − e(D)−D ∂e

∂D

)
,

of (42), the Euler-Poincaré equations (38) are equivalent to〈
∂t(DÂ), B̂

〉
+
〈
DÂ, [̂A,B]

〉
+
〈
Irh

(1

2
|Â|2− e(D)−D ∂e

∂D

)
, D ·B

〉
= 0, ∀t ∈ (0, T ), ∀ B ∈ ∆R

h .

(45)
To relate (45) and (40) to more traditional finite element notation, let us denote ρh = D,

uh = −Â, σh = E, and vh = −B̂. Then, using Proposition 4.3, the identities Âuh = −Â and

Âvh = −B̂, and the definition (23) of Au, we see that (45) and (40) are equivalent to seeking
uh ∈ Rh and ρh ∈ V r

h such that

〈∂t(ρhuh), vh〉+ ah(wh, uh, vh)− bh(vh, fh, ρh) = 0, ∀vh ∈ Rh (46)

〈∂tρh, σh〉 − bh(uh, σh, ρh) = 0, ∀σh ∈ V r
h , (47)
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where wh = Irh(ρhuh), fh = Irh

(
1
2 |uh|

2 − e(ρh)− ρh ∂e
∂ρh

)
, and

ah(w, u, v) =
∑
K∈Th

ˆ
K
w · (v · ∇u− u · ∇v) dx+

∑
e∈E0h

ˆ
e
(v · n[u]− u · n[v]) · {w} ds,

bh(w, f, g) =
∑
K∈Th

ˆ
K

(w · ∇f)g dx−
∑
e∈E0h

w · JfK{g} ds.

Remark 5.1. The above calculations carry over also to the setting in which the density is taken to
be an element of V s

h ⊂ V r
h , s < r. In this setting, (47) must hold for every σh ∈ V s

h , the definition

of fh becomes fh = Ish

(
1
2 |uh|

2 − e(ρh)− ρh ∂e
∂ρh

)
, and the definition of wh remains unchanged. By

fixing s and Rh, we may then take r large enough so that Irh(ρhuh) = ρhuh.

Extension to rotating fluids. For the purpose of application in geophysical fluid dynamics, we
consider the case of a rotating fluid with angular velocity ω in a gravitational field with potential
φ(x). The equations of motion are obtained by taking the Lagrangian

`(u, ρ) =

ˆ
Ω

[1

2
ρ|u|2 + ρR · u− ρe(ρ)− ρφ

]
dx,

where the vector field R is half the vector potential of ω, i.e. 2ω = curlR. Application of the
Euler-Poincaré principle (15) yields the balance of fluid momentum

ρ(∂tu+ u · ∇u+ 2ω × u) = −ρ∇φ−∇p, with p = ρ2 ∂e

∂ρ
. (48)

The discrete Lagrangian is defined exactly as in (35) and reads

`d(A,D) := `(Â,D) =

ˆ
Ω

[1

2
D|Â|2 +DÂ ·R−De(D)−Dφ

]
dx. (49)

We get δ`d
δA = Irh(DÂ)[ + Ih(DR)[ and the same reasoning as before shows that the affine map

A ∈ ∆R
h →

δ`d
δA
∈ (grh)∗/(∆R

h )◦ (50)

is a diffeomorphism for all D ∈ V r
h strictly positive. The Euler-Poincaré equations (38) now yield〈

∂t
(
D(Â+R)

)
, B̂
〉

+
〈
D(Â+R), [̂A,B]

〉
+
〈
Irh

(1

2
|Â|2+Â·R−e(D)−D ∂e

∂D
−φ
)
, D·B

〉
= 0, ∀B ∈ ∆R

h ,

(51)
which, in traditional finite element notations is

〈∂t(ρhuh + ρhR), vh〉+ ah(wh, uh, vh)− bh(vh, fh, ρh) = 0, ∀vh ∈ Rh, (52)

〈∂tρh, σh〉 − bh(uh, σh, ρh) = 0, ∀σh ∈ V r
h , (53)

where wh = Irh(ρhuh + ρhR), fh = Irh

(
1
2 |uh|

2 + uh ·R− e(ρh)− ρh ∂e
∂ρh
− φ

)
, and ah, bh defined as

before.
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Lowest-order setting. As a consequence of Remark 3.1, for r = 0, the Euler-Poincaré equations
(38) are identical to the discrete equations considered in [3] and, in the incompressible case, they
coincide with those of [19, 11, 9]. The discrete Lagrangians used are however different. For instance,
by using the result of Lemma 4.1, for r = 0, the discrete Lagrangian (42) for A ∈ S0

h becomes

`(A,D) =
1

2

∑
i

|Ki|Di

∑
j,k∈N(i)

M
(i)
jk AijAik −

∑
i

|Ki|Die(Di), (54)

where M
(i)
jk = (bj − bi) · (bk − bi). This is similar, but not identical, to the reduced Lagrangian

used in, e.g., [19]. There, each M (i) is replaced by a diagonal matrix with diagonal entries M
(i)
jj =

2|Ki||ci − cj |/|Ki ∩Kj |, where ci denotes the circumcenter of Ki.

Remark 5.2 (Function vs densities). We have defined in §2 the discrete diffeomorphism group by
considering its action on discrete functions. This corresponds to the discrete version of the right
action f 7→ f · ϕ = f ◦ ϕ with associated Lie algebra action f 7→ f · u = ∇uf . We could have
also defined the discrete diffeomorphism group by using a discrete version of the right action on
densities ρ 7→ ρ · ϕ = (ρ ◦ ϕ)Jϕ whose associated Lie algebra action is ρ 7→ ρ · u = div(ρu). If this
option is chosen, then the natural corresponding discretization of vector fields, denoted Ãu, acts on
discrete densities as

〈Ãuρ, f〉 =
∑
K∈Th

ˆ
K

div(ρu)f dx−
∑
e∈E0h

ˆ
e
u · JρK{f}ds

and one notes that 〈
Ãuρ, f

〉
= −

〈
ρ,Auf

〉
.

In this setting, the Lie algebra-to-vector field map must be modified accordingly, i.e., it follows by
applying the Lie algebra-to-vector fields map (33) to minus the adjoint of A. As a consequence,
with this approach we get the same discrete Lagrangian and the same discrete equations of motion
as previously.

Variational time discretization. The variational character of compressible fluid equations can
be exploited also at the temporal level, by deriving the temporal scheme via a discretization in
time of the Euler-Poincaré variational principle, in a similar way to what has been done in [11, 9]
for incompressible fluid models. This discretization of the Euler-Poincaré equation follows the one
presented in [6].

In this setting, the relations A(t) = ġ(t)g(t)−1 and D(t) = D0 · g(t)−1 are discretized as

Ak = τ−1(gk+1g
−1
k )/∆t and Dk = D0 · g−1

k , (55)

where τ : grh → Grh is a local diffeomorphism from a neighborhood of 0 ∈ grh to a neighborhood of
e ∈ Grh with τ(0) = e and τ(A)−1 = τ(−A). Given A ∈ grh, we denote by dτA : grh → grh the right
trivialized tangent map defined as

dτA(δA) := (Dτ(A) · δA) τ(A)−1, δA ∈ grh.

We denote by dτ−1
A : grh → grh its inverse and by (dτ−1

A )∗ : (grh)∗ → (grh)∗ the dual map.
The discrete Euler-Poincaré-d’Alembert variational principle reads

δ
K−1∑
k=0

`d(Ak, Dk)∆t = 0,
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for variations

δAk =
1

∆t
dτ−1

∆tAk
(Bk+1)− 1

∆t
dτ−1
−∆tAk

(Bk), δDk = −Dk ·Bk

where Bk ∈ ∆R
h vanishes at the extremities. These variations are obtained by taking the variations

of the relations (55) and defining Bk = δgkg
−1
k . It yields

1

∆t

〈〈(
dτ−1

∆tAk−1

)∗ δ`d
δAk−1

−
(
dτ−1
−∆tAk

)∗ δ`d
δAk

, Bk

〉〉
−
〈 δ`d
δDk

, Dk ·Bk
〉

= 0, ∀ Bk ∈ ∆R
h .

From Dk = D0 · g−1
k , one gets

Dk+1 = Dk · τ(−∆tAk). (56)

Several choices are possible for the local diffeomorphism τ , see, e.g., [6]. One option is the
Cayley transform

τ(A) =

(
I − A

2

)−1(
I +

A

2

)
.

We have τ(0) = I and since Dτ(0)δA = δA, it is a local diffeomorphism. We also note that A1 = 0
implies τ(A)1 = 1 in a suitably small neighborhood of 0. We have

dτA(δA) =

(
I − A

2

)−1

δA

(
I +

A

2

)−1

, dτ−1
A (B) = B +

1

2
[B,A]− 1

4
ABA,

so the discrete Euler-Poincaré equations read〈〈 1

∆t

(
δ`d
δAk

− δ`d
δAk−1

)
, Bk

〉〉
+

1

2

〈〈 δ`d
δAk

, [Ak, Bk]−
∆t

2
AkBkAk

〉〉
+

1

2

〈〈 δ`d
δAk−1

, [Ak−1, Bk] +
∆t

2
Ak−1BkAk−1

〉〉
+
〈 δ`d
δDk

, Dk ·Bk
〉

= 0, ∀ Bk ∈ ∆R
h . (57)

This is the discrete time version of (38). The discrete time version of (39) can be similarly written.
With this choice of τ , the evolution Dk is obtained from (56), which is equivalent to

Dk · (I +
∆t

2
Ak−1) = Dk−1 · (I −

∆t

2
Ak−1).

Recalling (37), we get〈
Dk −Dk−1

∆t
, Ek

〉
+

〈
Dk−1 +Dk

2
, Ak−1Ek

〉
= 0, ∀Ek ∈ V r

h . (58)

Energy preserving time discretization. For Lagrangians of the form (49), it is possible to
construct a time discretization that exactly preserves the energy

´
Ω[1

2D|Â|
2 +De(D)+Dφ]dx. Note

that the contribution of the rotation does not appear in the expression of the total energy. To do
this, let us define

Fk−1/2 =
1

2
Âk−1 · Âk + Âk−1/2 ·R− f(Dk−1, Dk)− φ, (59)

where

f(x, y) =
ye(y)− xe(x)

y − x
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and Ak−1/2 = 1
2(Ak−1 + Ak). Also let Dk−1/2 = 1

2(Dk−1 + Dk). The energy-preserving scheme
reads 〈〈 1

∆t

(
δ`d
δAk

− δ`d
δAk−1

)
, Bk

〉〉
+

1

2

〈〈 δ`d
δAk−1

+
δ`d
δAk

, [Ak−1/2, Bk]
〉〉

+ 〈Fk−1/2, Dk−1/2 ·Bk〉 = 0, ∀ Bk ∈ ∆R
h , (60)〈

Dk −Dk−1

∆t
, Ek

〉
+ 〈Dk−1/2 ·Ak−1/2, Ek〉 = 0, ∀Ek ∈ V r

h . (61)

Proposition 5.1. The solution of (60-61) satisfies

ˆ
Ω

[
1

2
Dk|Âk|2 +Dke(Dk) +Dkφ

]
dx =

ˆ
Ω

[
1

2
Dk−1|Âk−1|2 +Dk−1e(Dk−1) +Dk−1φ

]
dx. (62)

Proof. Taking Bk = Ak−1/2 in (60) gives〈〈 1

∆t

(
δ`d
δAk

− δ`d
δAk−1

)
, Ak−1/2

〉〉
+ 〈Fk−1/2, Dk−1/2 ·Ak−1/2〉 = 0.

Using the density equation (61) and the definition (49) of `d, we can rewrite this as〈 1

∆t

(
Dk(Âk +R)−Dk−1(Âk−1 +R)

)
, Âk−1/2

〉
−
〈
Dk −Dk−1

∆t
, Fk−1/2

〉
= 0. (63)

After rearrangement, the first term can be expressed as〈 1

∆t

(
Dk(Âk +R)−Dk−1(Âk−1 +R)

)
, Âk−1/2

〉
=

1

2∆t

(
〈DkÂk, Âk〉 − 〈Dk−1Âk−1, Âk−1〉

)
+

〈
Dk −Dk−1

∆t
, Âk−1/2 ·R+

1

2
Âk−1 · Âk

〉
.

Inserting this and the definition of Fk−1/2 into (63) gives

1

2∆t

(
〈DkÂk, Âk〉 − 〈Dk−1Âk−1, Âk−1〉

)
+

〈
Dk −Dk−1

∆t
, f(Dk−1, Dk) + φ

〉
= 0.

Finally, the definition of f yields

1

2∆t

(
〈DkÂk, Âk〉 − 〈Dk−1Âk−1, Âk−1〉

)
+

〈
Dke(Dk)−Dk−1e(Dk−1) +Dkφ−Dk−1φ

∆t
, 1

〉
= 0,

which is equivalent to (62).

Note that the definition of Fk−1/2 in (59) can be rewritten in terms of `d as

`d(Ak, Dk)− `d(Ak−1, Dk−1) =
1

2

〈〈 δ`d
δAk−1

+
δ`d
δAk

, Ak −Ak−1

〉〉
+ 〈Fk−1/2, Dk −Dk−1〉, (64)

This is reminiscent of a discrete gradient method [14, p. 174], with Fk−1/2 playing the role of the

discrete version of δ`
δD .
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Figure 1: Contours of the mass density at t = 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 in the Rayleigh-Taylor
instability simulation with the energy-preserving time discretization (60-61).

Figure 2: Contours of the mass density at t = 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 in the Rayleigh-Taylor
instability simulation with the variational time discretization (57-58).
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r h−1 ‖uh − u‖L2(Ω) Rate ‖ρh − ρ‖L2(Ω) Rate
1 3.58 · 10−1 2.10 · 10−1

0 2 1.84 · 10−1 0.96 1.17 · 10−1 0.85
4 9.31 · 10−2 0.99 5.58 · 10−2 1.06
8 4.64 · 10−2 1.00 2.74 · 10−2 1.03
1 1.43 · 10−1 1.00 · 10−1

1 2 4.36 · 10−2 1.71 2.43 · 10−2 2.05
4 1.37 · 10−2 1.68 6.85 · 10−3 1.83
8 4.40 · 10−3 1.63 1.74 · 10−3 1.97
1 2.78 · 10−2 1.83 · 10−2

2 2 7.80 · 10−3 1.83 4.61 · 10−3 1.99
4 1.81 · 10−3 2.11 6.35 · 10−4 2.86
8 4.50 · 10−4 2.00 1.15 · 10−4 2.46

Table 1: L2-errors in the velocity and density at time T = 0.5 obtained with the energy-preserving
time discretization (60-61).

∆t−1 ‖uh − u‖L2(Ω) Rate ‖ρh − ρ‖L2(Ω) Rate
2 4.93 · 10−2 9.95 · 10−2

4 1.68 · 10−2 1.55 3.12 · 10−2 1.67
8 5.03 · 10−3 1.74 8.92 · 10−3 1.81
16 1.44 · 10−3 1.80 2.43 · 10−3 1.88

Table 2: Convergence with respect to ∆t of the L2-errors in the velocity and density at time T = 0.5
obtained with the energy-preserving time discretization (60-61).

6 Numerical tests

Convergence. To test our numerical method, we used (52-53) to simulate a rotating fluid with
angular velocity ω = 1 (i.e. R = (−y, x)) and internal energy e(ρ) = 1

2ρ in the absence of a
gravitational field. This choice of the function e(ρ) corresponds to the case of the rotating shallow
water equations, for which ρ is interpreted as the fluid depth. We initialized u(x, y, 0) = (0, 0) and
ρ(x, y, 0) = 2 + sin(πx/2) sin(πy/2) on Ω = (−1, 1) × (−1, 1) and numerically integrated (52-53)
using the energy-preserving time discretization (60-61) with ∆t = 0.00625. We used the finite
element spaces Rh = RTr(Th) and V r

h with r = 0, 1, 2 on a uniform triangulation Th of Ω with
maximum element diameter h = 2−j , j = 0, 1, 2, 3. We computed the L2-errors in the velocity and
density at time T = 0.5 by comparing with an “exact solution” obtained with h = 2−5, r = 2. The
results in Table 1 indicate that the method’s convergence order is optimal (order r+ 1) when r = 0
and suboptimal when r > 0, but still grows with r.

We also repeated the above experiment with varying values of ∆t and with fixed values of
h = 2−4 and r = 2. The results in Table 2 indicate that the method is second-order accurate with
respect to ∆t.

Lastly, we repeated both of the above experiments with the variational time discretization (57-
58) in place of the energy-preserving time discretization (60-61). Following [19, 11, 9, 3], we
discarded the terms AkBkAk and Ak−1BkAk−1 from (57) in our implementation. The results
for the h-refinement experiment (not shown) were nearly indistinguishable from Table 1 once a
sufficiently small time step (∆t ≈ 4 × 10−4) was identified. The results for the ∆t-refinement
experiment, shown in Table 3, indicate that the variational time discretization (57-58) is first-order
accurate with respect to ∆t. The numbers labelled “Rate” in Table 3 are obtained from the errors
εj and time steps ∆tj via log(∆tj−1/∆tj)/ log(εj−1/εj), j = 2, 3, 4. Note that we used smaller time
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∆t−1 ‖uh − u‖L2(Ω) Rate ‖ρh − ρ‖L2(Ω) Rate
450 1.08 · 10−3 3.22 · 10−3

470 1.03 · 10−3 1.02 3.07 · 10−3 1.03
500 9.74 · 10−4 0.98 2.89 · 10−3 1.02
540 9.04 · 10−4 0.97 2.67 · 10−3 1.02

Table 3: Convergence with respect to ∆t of the L2-errors in the velocity and density at time T = 0.5
obtained with the variational time discretization (57-58).
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Figure 3: Relative errors in the energy E(t) =
´

Ω

(
1
2ρ|u|

2 + ρe(ρ) + ρφ
)

dx during the Rayleigh-
Taylor instability simulation.

steps in Table 3 than in Table 2 for stability reasons; we observed numerically that the variational
time discretization (57-58) is only conditionally stable, with a time step restriction of the form
∆t ≤ Ch. We believe the conditional stability of (57-58) is tied to (58), which is linearly implicit
and decoupled from (57). Replacing Ak−1 with Ak−1/2 in (58) appears to eliminate the instability.

Rayleigh-Taylor instability. Next, we simulated a Rayleigh-Taylor instability. For this test,
we considered a fully (or baroclinic) compressible fluid, whose energy depends on both the mass
density ρ and the entropy density s, both of which are advected parameters. The setting is the
same as above, but with a Lagrangian

`(u, ρ, s) =

ˆ
Ω

[1

2
ρ|u|2 − ρe(ρ, η)− ρφ

]
dx, (65)

where η = s
ρ is the specific entropy. In terms of the discrete velocity A ∈ ∆R

h , discrete mass density
D ∈ V r

h , and discrete entropy density S ∈ V r
h , the spatially discrete Euler-Poincaré equations for

this Lagrangian read〈〈
∂t
δ`d
δA

,B
〉〉

+
〈〈δ`d
δA

, [A,B]
〉〉

+
〈δ`d
δD

,D ·B
〉

+
〈δ`d
δS

, S ·B
〉

= 0, ∀ t ∈ (0, T ), ∀ B ∈ ∆R
h , (66)

or, equivalently,

∂t
δ`d
δA

+ ad∗A
δ`d
δA
− δ`d
δD
�D − δ`d

δS
� S ∈ (∆R

h )◦, ∀t ∈ (0, T ), (67)
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together with

〈∂tD,E〉+ 〈D,AE〉 = 0, and 〈∂tS,H〉+ 〈S,AH〉 = 0, ∀t ∈ (0, T ), ∀ E,H ∈ V r
h . (68)

In analogy with (60-61), an energy-preserving time discretization is given by〈〈 1

∆t

(
δ`d
δAk

− δ`d
δAk−1

)
, Bk

〉〉
+

1

2

〈〈 δ`d
δAk−1

+
δ`d
δAk

, [Ak−1/2, Bk]
〉〉

+〈Fk−1/2, Dk−1/2 ·Bk〉+ 〈Gk−1/2, Sk−1/2 ·Bk〉 = 0, ∀ Bk ∈ ∆R
h , (69)〈

Dk −Dk−1

∆t
, Ek

〉
+ 〈Dk−1/2 ·Ak−1/2, Ek〉 = 0, ∀Ek ∈ V r

h , (70)〈
Sk − Sk−1

∆t
,Hk

〉
+ 〈Sk−1/2 ·Ak−1/2, Hk〉 = 0, ∀Hk ∈ V r

h , (71)

where Ak−1/2 = 1
2(Ak−1 +Ak), Dk−1/2 = 1

2(Dk−1 +Dk), Sk−1/2 = 1
2(Sk−1 + Sk),

Fk−1/2 =
1

2
Âk−1 · Âk −

1

2
(f(Dk−1, Dk, Sk−1) + f(Dk−1, Dk, Sk))− φ, (72)

Gk−1/2 = −1

2
(g(Sk−1, Sk, Dk−1) + g(Sk−1, Sk, Dk)) , (73)

and

f(D,D′, S) =
D′e(D′, S/D′)−De(D,S/D)

D′ −D
,

g(S, S′, D) =
De(D,S′/D)−De(D,S/D)

S′ − S
.

We took e equal to the internal energy for a perfect gas,

e(ρ, η) = Keη/Cvργ−1,

where γ = 5/3 and K = Cv = 1, and we used a gravitational potential φ = −y, which corresponds
to an upward gravitational force. We initialized

ρ(x, y, 0) = 1.5− 0.5 tanh

(
y − 0.5

0.02

)
,

u(x, y, 0) =

(
0,−0.025

√
γp(x, y)

ρ(x, y, 0)
cos(8πx) exp

(
−(y − 0.5)2

0.09

))
,

s(x, y, 0) = Cvρ(x, y, 0) log

(
p(x, y)

(γ − 1)Kρ(x, y, 0)γ

)
,

where

p(x, y) = 1.5y + 1.25 + (0.25− 0.5y) tanh

(
y − 0.5

0.02

)
.

We implemented (69-71) with ∆t = 0.01 and with the finite element spaces Rh = RT0(Th) and V 1
h

on a uniform triangulation Th of Ω = (0, 1/4)×(0, 1) with maximum element diameter h = 2−8. We
incorporated upwinding into (69-71) using the strategy detailed in [12], which retains the scheme’s
energy-preserving property. Plots of the computed mass density at various times t are shown in
Fig. 1. Fig. 3 confirms that energy was preserved exactly up to roundoff errors.
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We repeated this simulation with the variational time discretization (57-58) (modified to include
the entropy density). To ensure stability, we used a smaller time step ∆t = 0.00025 and incorporated
upwinding as above. We used the same finite element spaces as above but with h = 2−7. Energy
decayed by less than 2 × 10−3 of its initial value; see Fig. 3. Our experiments suggest that this
(rather insignificant) energy drift is attributable to upwinding, which cannot be abandoned without
sacrificing stability in this example. Plots of the computed mass density are shown in Fig. 2.

A Euler-Poincaré variational principle

In this Appendix we first recall the Euler-Poincaré principle for invariant Euler-Lagrange systems on
Lie groups. This general setting underlies the Lie group description of incompressible flows recalled
in §2.1 due to [2], in which case the Lie group is G = Diffvol(Ω). It also underlies the semidiscrete
setting, in which case the Lie group is G = Gh. In this situation, however, a nonholonomic
constraint needs to be considered, see Appendix B. Then, we describe the extension of this setting
that is needed to formulate the variational formulation of compressible flow and its discretization.

A.1 Euler-Poincaré variational principle for incompressible flows

Let G be a Lie group and let L : TG→ R be a Lagrangian defined on the tangent bundle TG of G.
The associated equations of evolution, given by the Euler-Lagrange equations, arise as the critical
curve condition for the Hamilton principle

δ

ˆ T

0
L(g(t), ġ(t))dt = 0, (74)

for arbitrary variations δg with δg(0) = δg(T ) = 0.

If we assume that L is G-invariant, i.e., L(gh, ġh) = L(g, ġ), for all h ∈ G, then L induces a
function ` : g→ R on the Lie algebra g of G, defined by `(u) = L(g, ġ), with u = ġg−1 ∈ g. In this
case the equations of motion can be expressed exclusively in terms of u and ` and are obtained by
rewriting the variational principle (74) in terms of ` and u(t). One gets

δ

ˆ T

0
`(u(t))dt = 0, for δu = ∂tv + [v, u], (75)

where v(t) ∈ g is an arbitrary curve with v(0) = v(T ) = 0. The form of the variation δu in (75) is
obtained by a direct computation using u = ġg−1 and defining v = δgg−1.

In order to formulate the equations associated to (75) one needs to select an appropriate space
in nondegenerate duality with g denoted g∗ (the usual dual space in finite dimensions). We shall
denote by 〈〈 , 〉〉 : g∗ × g→ R the associated nondegenerate duality pairing. From (75) one directly
obtains the equation 〈〈

∂t
δ`

δu
, v
〉〉

+
〈〈 δ`
δu
, [u, v]

〉〉
= 0, ∀ v ∈ g. (76)

In (76), the functional derivative δ`
δu ∈ g∗ of ` is defined in terms of the duality pairing as〈〈 δ`
δu
, δu
〉〉

=
d

dε

∣∣∣∣
ε=0

`(u+ εδu).
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In finite dimensions, and under appropriate choices for the functional spaces in infinite dimen-
sions, (76) is equivalent to the Euler-Poincaré equation

∂t
δ`

δu
+ ad∗u

δ`

δu
= 0,

where the coadjoint operator ad∗u : g∗ → g∗ is defined by 〈〈ad∗um, v〉〉 = 〈〈m, [u, v]〉〉.

For incompressible flows, without describing the functional analytic setting for simplicity, we
have G = Diffvol(Ω) and g = Xvol(Ω) the Lie algebra of divergence free vector fields parallel to the
boundary. We can choose g∗ = Xvol(Ω) with duality pairing 〈〈 , 〉〉 given by the L2 inner product.
A direct computation gives the coadjoint operator ad∗um = P(u · ∇m + ∇uTm), where P is the
Leray-Hodge projector onto Xvol(Ω). One directly checks that in this case (75) yields the Euler
equations (3) for incompressible flows.

A.2 Euler-Poincaré variational principle for compressible flows

The general setting underlying the variational formulation for compressible fluids starts exactly as
before, namely, a system whose evolution is given by the Euler-Lagrange equations for a Lagrangian
defined on the tangent bundle of a Lie group G. The main difference is that the Lagrangian depends
parametrically on some element a0 ∈ V of a vector space (the reference mass density %0 in the case
of the barotropic compressible fluid, the reference mass and entropy densities %0 and S0 for the
general compressible fluid) on which G acts by representation, and, in addition, L is invariant
only under the subgroup of G that keeps a0 fixed. If we denote by L(g, ġ, a0) this Lagrangian
and by a ∈ V 7→ a · g ∈ V the representation of G on V , the reduced Lagrangian is defined by
`(u, a) = L(g, ġ, a0), where u = ġg−1, a = a0 · g−1.

The Hamilton principle now yields the variational formulation

δ

ˆ T

0
`(u(t), a(t))dt = 0, for δu = ∂tv + [v, u] and δa = −a · v, (77)

where v(t) ∈ g is an arbitrary curve with v(0) = v(T ) = 0. The form of the variation δu in (77) is
the same as before, while the expression for δa is obtained from the relation a = a0 · g−1.

From (77) and with respect to the choice of a spaces g∗ and V ∗ in nondegenerate duality with
g and V , with duality pairings 〈〈 , 〉〉 and 〈 , 〉V , one directly obtains the equations〈〈

∂t
δ`

δu
, v
〉〉

+
〈〈 δ`
δu
, [u, v]

〉〉
+
〈 δ`
δa
, a · v

〉
V

= 0, ∀ v ∈ g. (78)

The continuity equation
∂ta+ a · u = 0

arises from the definition a(t) = a0 · g(t)−1. In a similar way with above, (78) now yields the
Euler-Poincaré equations

∂t
δ`

δu
+ ad∗u

δ`

δu
=
δ`

δa
� a, (79)

where δ`
δa � a ∈ g∗ is defined by

〈〈
δ`
δa � a, v

〉〉
= −

〈
δ`
δa , a · v

〉
V

, for all v ∈ g. We refer to [15] for a

detailed exposition.

For the compressible fluid, in the continuous case we have G = Diff(Ω) and g = X(Ω) the
Lie algebra of vector fields on Ω with vanishing normal component to the boundary. We choose
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to identify g∗ with g via the L2 duality pairing. Consider the Lagrangian (65) of the general
compressible fluid. Using the expressions ad∗um = u · ∇m + ∇uTm + m div u, δ`

δu = ρu, δ`
δρ =

1
2 |u|

2 − e(ρ)− ρ ∂e∂ρ + η ∂e∂η − φ, δ`
δs = − ∂e

∂η , δ`
δρ � ρ = ρ∇ δ`

δρ , and δ`
δs � s = s∇ δ`

δs , one directly obtains

ρ(∂tu+ u · ∇u) = −∇p− ρ∇φ

from (79), with p = ρ2 ∂e
∂ρ . For the semidiscrete case, one uses a nonholonomic version of the

Euler-Poincaré equations (79), reviewed in the next paragraph.

B Remarks on the nonholonomic Euler-Poincaré variational for-
mulation

Hamilton’s principle can be extended to the case in which the system under consideration is subject
to a constraint, given by a distribution on the configuration manifold, i.e., a vector subbundle of
the tangent bundle. This is known as the Lagrange-d’Alembert principle and, for a system on a
Lie group G and constraint ∆G ⊂ TG, it is given by the same critical condition (74) but only with
respect to variations satisfying the constraint, i.e., δg ∈ ∆G.

In the G-invariant setting recalled in §A.1 it is assumed that the constraint ∆G is also G-
invariant and thus induces a subspace ∆ ⊂ g of the Lie algebra. In the more general setting of
§A.2, one can allow ∆G to be only Ga0-invariant, although for the situation of interest in this paper,
∆G is also G-invariant.

The Lagrange-d’Alembert principle yields now the Euler-Poincaré-d’Alembert principle (77) in
which we have the additional constraint u(t) ∈ ∆ on the solution and v(t) ∈ ∆ on the variations,
so that (78) becomes〈〈

∂t
δ`

δu
, v
〉〉

+
〈〈 δ`
δu
, [u, v]

〉〉
+
〈 δ`
δa
, a · v

〉
V

= 0, for all v ∈ ∆, where u ∈ ∆. (80)

In presence of the nonholonomic constraint, (79) becomes

∂t
δ`

δu
+ ad∗u

δ`

δu
− δ`

δa
� a ∈ ∆◦, u ∈ ∆, (81)

where ∆◦ = {m ∈ g∗ | 〈〈m,u〉〉 = 0, ∀ u ∈ ∆}.

There are two important remarks concerning (80) and (81) that play an important role for
the variational discretization carried out in this paper. First, we note that although the solution
belongs to the constraint, i.e., u ∈ ∆, the equations depend on the expression of the Lagrangian `
on a larger space, namely, on ∆ + [∆,∆]. It is not enough to have its expression only on ∆. This is
a main characteristic of nonholonomic mechanics. Second, a sufficient condition to get a solvable
differential equation is that the map u ∈ ∆ 7→ δ`

δu ∈ g∗/∆◦ is a diffeomorphism for all a.

C Polynomials

Below we prove two facts about polynomials that are used in the proof of Proposition 3.3. We denote
by Hr(K) the space of homogeneous polynomials of degree r on a simplex K. To distinguish powers
from indices, we denote coordinates by x1, x2, . . . , xn rather than x1, x2, . . . , xn in this section.
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Lemma C.1. Let K be a simplex of dimension n ≥ 1. For every integer r ≥ 0,{
N∑
i=1

piqi | N ∈ N, pi, qi ∈ Pr(K), i = 1, 2, . . . , N

}
= P2r(K).

Proof. This follows from the fact that every monomial in P2r(K) can be written as a product of
two monomials in Pr(K).

Lemma C.2. Let K be a simplex of dimension n ∈ {2, 3}. For every integer r ≥ 0,{
N∑
i=1

pi∇qi | N ∈ N, pi, qi ∈ Pr(K), i = 1, 2, . . . , N

}
= P2r−1(K)n.

Proof. We proceed by induction.

Denote Qr(K) =
{∑N

i=1 pi∇qi | N ∈ N, pi, qi ∈ Pr(K), i = 1, 2, . . . , N
}

. By inductive hypoth-

esis, Qr(K) contains Qr−1(K) = P2r−3(K)n. It also contains H2r−2(K)n. Indeed, if fek ∈
H2r−2(K)n with k ∈ {1, 2, . . . , n} and f a monomial, then f = xjg for some g ∈ H2r−3(K)
and some j ∈ {1, 2, . . . , n}, so fek =

∑
i(xjpi)∇qi ∈ Qr(K) for some pi, qi ∈ Pr−1(K) by inductive

hypothesis. Thus, Qr(K) contains P2r−2(K)n.
Next we show that Qr(K) contains every u ∈ H2r−1(K)n. Without loss of generality, we may

assume u = fe1 with f ∈ H2r−1(K) a monomial. When n = 2, the only such vector fields are
u = xa1x

2r−1−a
2 e1, a = 0, 1, . . . , 2r − 1, which can be expressed as

xa1x
2r−1−a
2 e1 =

{
1
rx

a−r+1
1 x2r−1−a

2 ∇(xr1), if a ≥ r − 1,
1

a+1x
r
2∇(xa+1

1 xr−1−a
2 )− r−1−a

(a+1)rx
a+1
1 xr−1−a

2 ∇(xr2), if a < r − 1.

The case n = 3 is handled similarly by considering the vector fields fe1 with

f ∈ {xa1xb2x2r−1−a−b
3 | a, b ≥ 0, a+ b ≤ 2r − 1}.
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