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SUMMARY

We propose a family of methods for simulating two-dimensional incompressible, low Reynolds number
flow around a moving obstacle whose motion is prescribed. The methods make use of a universal mesh:
a fixed background mesh that adapts to the geometry of the immersed obstacle at all times by adjusting a
few elements in the neighborhood of the obstacle’s boundary. The resulting mesh provides a conforming
triangulation of the fluid domain over which discretizations of any desired order of accuracy in space and
time can be constructed using standard finite element spaces together with off-the-shelf time integrators. We
demonstrate the approach by using Taylor-Hood elements to approximate the fluid velocity and pressure. To
integrate in time, we consider implicit Runge-Kutta schemes as well as a fractional step scheme. We illustrate
the methods and study their convergence numerically via examples that involve flow around obstacles that
undergo prescribed deformations. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the key challenges in numerical simulations of fluid flow around moving obstacles is the
discretization of an evolving domain, namely, the domain occupied by the fluid. Commonly, this
challenge is addressed using one of two tools: a deforming mesh, which deforms in concert with
the moving fluid domain, or a fixed mesh, which triangulates or quadrangulates a larger domain in
which the moving boundary is immersed for all times. In contrast, this paper presents a family of
methods for simulating two-dimensional incompressible, low Reynolds number flow around moving
obstacles with prescribed evolution using a universal mesh: a background triangulation that contains
the fluid domain for all times and conforms to its geometry at all times by perturbing a small number
of nodes in the neighborhood of the immersed fluid boundary.

The merits of this strategy are made most apparent when one considers the challenges associated
with the construction of numerical methods for fluid flow around obstacles that are simultaneously
robust and accurate to high order in space and time. The latter goal is particularly elusive for
problems on moving domains, since errors in the discretization of the domain’s geometry (and
in the discretization, if any, of its temporal evolution) can dictate the order of a method. This
consideration renders deforming-mesh methods attractive, especially if implemented using curved
elements along the boundary. In this light, it is perhaps surprising that many examples of deforming-
mesh methods in the literature, with a few noteworthy exceptions [1–10], are often restricted to at
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most second-order accuracy [11–19]. Moreover, robustness of the mesh motion poses a challenge to
deforming-mesh methods [20, 21], which often prescribe a motion for the mesh by solving systems
of equations (such as those of linear elasticity) for the positions of mesh nodes [22–26]. Regardless
of a deforming-mesh method’s mesh motion strategy, sufficiently large domain deformations may
lead to element distortions (or, in more severe cases, element inversions) that are detrimental both
to the accuracy of the spatial discretization and to the conditioning of the discrete governing
equations [27]. These considerations can ultimately mandate that the domain be remeshed from
scratch at various instants during a simulation [22, 28–30].

Fixed-mesh methods circumvent the difficulty of designing a robust mesh motion at the expense
of geometric conformity. As a consequence, fixed-mesh methods require special care in order to
account for the disagreement between the immersed obstacle boundary and element interfaces.
A variety of techniques aim to deal with this discrepancy, including adaptive refinement in
the neighborhood of the immersed boundary [31–33], cutting elements [34–38], enriching finite
element spaces [39, 40], cutting elements and enriching finite element spaces [41–43], Nitsche-
inspired methods [44, 45], smearing the interface [46, 47], modifying finite-difference stencils
near the boundary [33, 48–50], and introducing surrogate forcing terms in lieu of the boundary
conditions [51,52]. Integration in time poses an additional challenge for fixed-mesh methods, since
nodes of the background mesh may occupy differing states (fluid vs. solid) over the course of a single
time step. This peculiarity is known to introduce numerical artifacts such as spurious oscillations
in the pressure field for some fixed-mesh methods [37, 53, 54]. Furthermore, even if a given spatial
discretization is known to deliver high-order spatial accuracy for steady flows around an embedded
obstacle, its incorporation into a numerical method for unsteady flow around moving obstacles with
high spatial and temporal accuracy is arguably a nontrivial task. These observations help to explain
why many fixed mesh methods, again with a few notable exceptions [55, 56], are often restricted to
first- or second-order accuracy [50, 52, 57–60].

The framework presented in this paper distinguishes itself from the preceding approaches by
exhibiting the following features simultaneously. First, a universal mesh delivers a conforming
representation of the evolving fluid domain at all times. This conforming mesh is obtained by
perturbing the nodes of a background mesh using a mapping which supplies not only an adaptation
of the background mesh, but also a mesh motion over short time intervals suitable for constructing
high-order discretizations of the governing equations. Second, the mesh motion strategy is robust, in
the sense that large domain deformations pose no threat to the quality of the conforming mesh, being
at all times derived from a small perturbation of the background mesh. Third, our approach provides
a systematic framework for constructing methods of a desired order of accuracy in space and in
time for low Reynolds number flows, simply by discretizing in space with a finite element space
of the appropriate order and choosing a time integrator of the appropriate order. We demonstrate
this by combining high-order Taylor-Hood elements with high-order implicit Runge Kutta schemes.
Finally, the framework is algorithmically simple. In its basic form, the alteration of the background
mesh requires adjustments to nodal coordinates only, not the mesh’s connectivity, and the nodal
motions are independent and explicitly defined.

To simplify the presentation and to emphasize the main contributions of the present work, we
restrict our attention to problems for which the flow has a low Reynolds number, the obstacle
boundary is smooth (C2-regular), and the obstacle motion is prescribed. Needless to say, higher
Reynolds number flows pose additional challenges (the need for high resolution in boundary layers
and for stabilization of convective terms in the spatial discretization) that warrant enhancements to
the present strategy to ensure its viability. Likewise, the design of universal meshes for domains with
lower regularity, such as domains with corners, remains an area of active research. Unprescribed
obstacle motions would, of course, introduce additional complexity into the framework, but only in
the sense that additional unknowns would need to be solved for concurrently with the fluid variables.

Organization. This paper is organized as follows. In Section 2, we recall the governing equations
for incompressible, viscous flow around a moving obstacle with prescribed evolution, and we
recast the equations in weak form. In Section 3, we propose a discretization of the aforementioned
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Figure 1. Fluid domain Ωt = D \ P t.

equations using a universal mesh in conjunction with Taylor-Hood finite elements [61]. To integrate
in time, we propose the use of implicit Runge-Kutta schemes as well as a fractional step scheme. In
Section 4, we apply the proposed methods to simulate flow around various obstacles with prescribed
evolution: a rotating ellipse, an oscillating disk, and a rotating stirrer. We study numerically the
convergence orders of the methods in the context of the rotating ellipse, where an analytical solution
is readily manufactured. We close with some concluding remarks in Section 5.

2. PROBLEM

We study incompressible, viscous fluid flow around a moving obstacle immersed in a domain
D ⊂ R2. We denote by P t ⊂ D the domain occupied by the obstacle at time t and by Ωt = D \ P t
the domain occupied by the fluid. Taking the fluid density to be everywhere unity, the governing
equations for the velocity u and pressure p read

∂u

∂t
+ u · ∇xu− ν∆xu = −∇xp in D \ P t (1)

∇x · u = 0 in D \ P t, (2)

where ν > 0 is the kinematic viscosity of the fluid. On the interface between the obstacle and the
fluid, the no-slip condition holds:

u(x, t) = vP (x, t), x ∈ ∂P t (3)

where vP (x, t) is the prescribed velocity of the obstacle at x ∈ ∂P t. On the remainder of the fluid
boundary ∂D, and depending on the example under consideration, we impose either the natural
boundary conditions

pn− ν
(
∇xu+ (∇xu)T

)
n = 0 on ∂D (4)

or the no-slip condition
u = 0 on ∂D, (5)

and in this last case the pressure field is defined up to a constant.

Weak Formulation. For later use, it is convenient to record a weak formulation of (1-2). Let us
introduce two collections of function spaces, one for each choice of boundary conditions discussed
above. When the boundary conditions are given by (3-4), we denote

V̊t = {u ∈ H1(Ωt)2 | u = 0 on ∂P t}
Vt = {u ∈ H1(Ωt)2 | u = vP (·, t) on ∂P t}
Qt = L2(Ωt).
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When the boundary conditions are given by (3) and (5), we denote

V̊t = H1
0 (Ωt)2

Vt = {u ∈ H1(Ωt)2 | u = vP (·, t) on ∂P t, u = 0 on ∂D}
Qt = L2(Ωt)/R.

In either of these two settings, a weak formulation of (1-2) reads: Find u(·, t) ∈ Vt and p(·, t) ∈ Qt
such that

mt(u̇, w) + at(u,w) + ct(w, p) = 0 ∀w ∈ V̊t (6)

ct(u, q) = 0 ∀q ∈ Qt (7)

for every t ∈ (0, T ], where the meanings of V̊t, Vt, and Qt depend upon the boundary conditions
under consideration, and

mt(u,w) =

∫
Ωt

u · w dx

at(u,w) = ν

∫
Ωt

(
∇xu+ (∇xu)T

)
: ∇xw dx+

∫
Ωt

(u · ∇xu) · w dx

ct(u, p) = −
∫

Ωt

(∇ · u)p dx.

The well-posedness of this system in the case of a fixed domain without advection is proven in [62].

3. METHOD

In this section, we propose a discretization of (1-2) that is based upon the use of a universal mesh.
Our approach follows that of [63], where a framework for constructing numerical methods for
moving-boundary problems using universal meshes is introduced in the context of a parabolic model
problem.

The discretization proceeds in several steps: (1) partitioning the temporal axis into short time
intervals

⋃N
n=1(tn−1, tn] = (0, T ]; (2) constructing a conforming mesh Sh(t) for Ωt, t ∈ (tn−1, tn],

over each short time interval by adapting the universal mesh; (3) performing a Galerkin projection
of the governing equations onto a finite element space associated with Sh(t) over each short time
interval; and (4) choosing a time integrator to numerically integrate the resulting system of ODE’s
over (tn−1, tn] for each n. In the last step, the initial condition for numerical integration over
(tn−1, tn] will come from projecting the discrete solution at time t = tn−1 onto the finite element
space associated with the triangulation Sh(tn−1

+ ), which generally differs from Sh(tn−1).
A distinctive feature of our discretization is the manner in which the conforming triangulation

Sh(t) of Ωt is constructed. As illustrated in Fig. 2, our method constructs Sh(t) by immersing Ωt in
a background mesh Th (the universal mesh), identifying a subtriangulation of Th that approximates
the immersed domain, and adjusting a few elements so that it conforms exactly to Ωt. This approach
differs markedly from classical deforming-mesh methods, where the task of triangulating Ωt is
often handled by solving global systems of equations (such as those of linear elasticity) for nodal
positions. We describe the construction of Sh(t) using a universal mesh in the following subsection
and provide greater detail in Appendix A, which summarizes the presentation of [63].

The conditions under which a given background triangulation Th can be so adjusted to conform
to a family of domains Ωt, t ∈ [0, T ], are laid forth in [64, 65] and expanded in [66]. Briefly, the
procedure is guaranteed to succeed if:

(3.i) Ωt is C2-regular for every t.

(3.ii) Th is sufficiently refined in a neighborhood of ∂Ωt for every t.

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (0000)
Prepared using nmeauth.cls DOI: 10.1002/nme



HIGH-ORDER METHODS FOR FLOWS AROUND MOVING OBSTACLES 5

Ωt
n−1

Ωt
n

Ωt
n

Ωt
n+1

Snh Sn+1
h

Φt
n−1
+ Φt

n

Φt
n
+ Φt

n+1

Figure 2. Illustration of the manner in which a universal mesh provides a conforming triangulation of an
immersed domain Ωt for all times t. Over a short time interval (tn−1, tn], an approximating subtriangulation
Snh is identified and adapted to the immersed domain using a map Φt : Snh → Ωt, t ∈ (tn−1, tn]. Over the
next short time interval (tn, tn+1], a new subtriangulation Sn+1

h is identified and adapted to the immersed

domain using a map Φt : Sn+1
h → Ωt, t ∈ (tn, tn+1]. For visual clarity, the boundary of Ωt

n−1

has been
juxtaposed in dashed lines onto the conforming mesh Φt

n

(Snh ) for Ωt
n

. Likewise, the boundary of Ωt
n

has
been juxtaposed in dashed lines onto the conforming mesh Φt

n+1

(Sn+1
h ) for Ωt

n+1

(3.iii) All triangles in Th have angles bounded above by a constant ϑ < π/2.

(3.iv) The intervals (tn−1, tn] satisfy max
1≤n≤N

(tn − tn−1) ≤ Ch with a sufficiently small constant C.

3.1. Universal Mesh

Let Th be a triangulation of D satisfying conditions (3.i-3.iv), with h denoting the maximum
diameter of an element K ∈ Th. For i = 0, 1, 2, 3, let T th,i denote the collection of triangles K ∈ Th
for which exactly i vertices of K do not lie in the interior of Ωt.

Fix a partition 0 = t0 < t1 < · · · < tN = T of the temporal axis. Our approach for constructing
a conforming mesh Sh(t) for Ωt, t ∈ (tn−1, tn], will consist of identifying a subtriangulation Snh of
the background triangulation Th and defining a time-dependent bijection

Φt : Snh → Ωt, t ∈ (tn−1, tn].

Here and in the sequel, we abuse notation by writing Snh to denote both the triangulation (the list of
vertices and their connectivities) as well as the region in R2 that it occupies. Our choice of Snh is

Snh = T t
n−1

h,0 ∪ T t
n−1

h,1 ∪ T t
n−1

h,2 ,

which is simply the set of triangles in the background triangulation with at least one vertex lying
inside Ωt

n−1

. Our choice of the map Φt : Snh → Ωt is that detailed in [63]. We recapitulate the
explicit formulas for Φt in Appendix A.

For each t ∈ (tn−1, tn], the map Φt delivers a conforming mesh of Ωt having the same
connectivity as Snh but consisting of triangles Φt(K), K ∈ Snh . We label this curvilinear mesh
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Φt(Snh ) and set
Sh(t) = Φt(Snh ), t ∈ (tn−1, tn].

The remainder of this section is devoted to a discretization of (1-2) using finite element spaces
over the evolving subtriangulation Sh(t). As is customary for readers familiar with ALE schemes,
the resulting discretization (cf. (17)) over each short time interval (tn−1, tn] will resemble a
discretization of

Du

Dt
+ (u− v) · ∇xu− ν∆xu = −∇xp in D \ P t (8)

∇x · u = 0 in D \ P t, (9)

where
Du

Dt
=
∂u

∂t
+ v · ∇xu

denotes the material time derivative of u along the path of a material particle that moves with the
mesh Sh(t), whose velocity we denote by

v(Φt(X), t) = Φ̇t(X) =
∂

∂t

∣∣∣∣
X

Φt(X). (10)

Since the subtriangulation Sh(t) changes abruptly at each tn, n = 1, 2, . . . , N , a projection will be
used to transfer information between finite element spaces at such instants; cf. Section 3.3.

3.2. Galerkin Formulation over Short Time Intervals

We now describe a spatial discretization of (1-2) that is obtained by performing a Galerkin projection
of the weak equations (6-7) onto finite element subspaces V̊th ⊂ V̊t, Vth ⊂ Vt, and Qth ⊂ Qt over a
short time interval (tn−1, tn]. We focus on the case in which the boundary conditions are given
by (3-4). The case in which the boundary conditions are given by (3) and (5) is handled similarly.

Here, we consider the use of Taylor-Hood Pk-Pk−1 finite elements with an integer k ≥ 2 [61].
Such elements approximate the velocity field u and the pressure field p with continuous functions
that are elementwise polynomials of degree at most k and k − 1, respectively, on Sh(t). These finite
element spaces are easy to construct with the aid of the map Φt : Snh → Ωt introduced in Section 3.1.
Namely,

V̊th =
{
uh ∈ C0(Ωt)2

∣∣ uh ◦ Φt
∣∣
K
∈ Pk(K)2 ∀K ∈ Snh , uh = 0 on ∂P t

}
Vth =

{
uh ∈ C0(Ωt)2

∣∣uh ◦ Φt
∣∣
K
∈ Pk(K)2 ∀K ∈ Snh , uh = ithvP (·, t) on ∂P t

}
Qth =

{
ph ∈ C0(Ωt)

∣∣ ph ◦ Φt
∣∣
K
∈ Pk−1(K)∀K ∈ Snh

}
.

Here, ithvP (·, t) denotes the nodal interpolant of vP (·, t) onto the space of continuous functions on
∂P t that are edgewise polynomials of degree k, i.e. ithvP (Φt(·), t) ∈ Pk(e) for every edge e ⊂ ∂Snh .

The Galerkin projection of (6-7) over (tn−1, tn] then reads: Find uh(·, t) ∈ Vth and ph(·, t) ∈ Qth
such that

mt(u̇h, wh) + at(uh, wh) + ct(wh, ph) = 0 ∀wh ∈ V̊th (11)

ct(uh, qh) = 0 ∀qh ∈ Qth (12)

for every t ∈ (tn−1, tn].
The system (11-12) is equivalent to a system of differential-algebraic equations (DAEs). To

deduce this, it is convenient to construct bases for V̊th, Vth, and Qth by composing (a subset of)
shape functions on the background mesh Th with the map (Φt)−1. Let

Ṽh =
{
Uh ∈ C0(D)2

∣∣ Uh|K ∈ Pk(K)2 ∀K ∈ Th
}

Q̃h =
{
Ph ∈ C0(D)

∣∣ Ph|K ∈ Pk−1(K)∀K ∈ Th
}
.
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HIGH-ORDER METHODS FOR FLOWS AROUND MOVING OBSTACLES 7

In what follows, we will derive from (11-12) a system of DAEs of dimension Nu +Np, where
Nu = dim(Ṽh) and Np = dim(Q̃h).

Let {Ña}Nu
a=1 and {M̃k}

Np

k=1 be the standard Lagrange bases for Ṽh and Q̃h, respectively, indexed
by global degree of freedom numbers. Let {Xa}Nu

a=1 and {Yk}
Np

k=1 denote the locations of the
corresponding degrees of freedom in Th. Additionally, let

I̊nu = {1 ≤ a ≤ Nu | supp(Ña) ∩ int(Snh ) 6= ∅, Ña = 0 on ∂Snh \ ∂D}

Inu = {1 ≤ a ≤ Nu | supp(Ña) ∩ int(Snh ) 6= ∅}

Inp = {1 ≤ k ≤ Np | supp(M̃k) ∩ int(Snh ) 6= ∅}.

where supp(f) denotes the support of a function f and int(S) denotes the interior of a set S. Bases
for the spaces V̊th, Vth, andQth are easily constructed with the aid of the functions nta : Ωt → R2 and
mt
k : Ωt → R given by

nta(Φt(X)) = Ña(X), a ∈ Inu (13)

and
mt
k(Φt(X)) = M̃k(X), k ∈ Inp . (14)

Namely,

V̊th = span
{
nta | a ∈ I̊nu

}
Vth = V̊th +

∑
a∈Inu\I̊nu

vP (Φt(Xa), t)nta

Qth = span
{
mt
k | k ∈ Inp

}
.

If we adopt the convention that nta = 0 in Ωt for a /∈ Inu and mt
k = 0 in Ωt for k /∈ Inp , we may

expand

uh(x, t) =

Nu∑
a=1

ua(t)nta(x) (15)

and

ph(x, t) =

Np∑
k=1

pk(t)mt
k(x) (16)

as linear combinations of the shape functions nta and mt
a, bearing in mind that

uh(·, t) ∈ Vth =⇒ ua(t) = vP (Φt(Xa), t) ∀a ∈ Inu \ I̊nu .

In the expansions above, we adopt the convention that ua(t) = 0 for a /∈ Inu and pk(t) = 0 for
k /∈ Inp . Observe that by (13),

u̇h(x, t) =

Nu∑
a=1

u̇a(t)nta(x) +

Nu∑
a=1

ua(t)
∂nta
∂t

(x)

=

Nu∑
a=1

u̇a(t)nta(x) +

Nu∑
a=1

ua(t)(−v(x, t) · ∇xnta(x))

=

Nu∑
a=1

u̇a(t)nta(x)− v(x, t) · ∇xuh(x, t)

where v is given by (10).
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It follows that (11-12) is equivalent to the system of DAEs

M(t)

(
u̇(t)

0

)
+ K(t)

(
u(t)
p(t)

)
+

(
b(u(t), t)

0

)
=

(
f(t)
0

)
(17)

where

M(t) =

(
Mu(t) 0

0 0

)
K(t) =

(
Ku(t) C̊(t)T

C(t) Z

)
and the entries of Mu(t),Ku(t) ∈ RNu×Nu , C(t), C̊(t) ∈ RNp×Nu , Z ∈ RNp×Np , and
b(u(t), t), f(t) ∈ RNu are given by

Mu,ab(t) =

{
mt(ntb, n

t
a) if a ∈ I̊nu , b ∈ Inu

0 otherwise

Ku,ab(t) =

{
atν(ntb, n

t
a) if a ∈ I̊nu , b ∈ Inu

δab otherwise

Ckb(t) =

{
ct(ntb,m

t
k) if k ∈ Inp , b ∈ Inu

0 otherwise

C̊kb(t) =

{
ct(ntb,m

t
k) if k ∈ Inp , b ∈ I̊nu

0 otherwise

Zkl =

{
0 if k ∈ Inp
δkl otherwise

ba(u(t), t) =

{
bt(uh − v, uh, nta) if a ∈ I̊nu
0 otherwise

fa(t) =

{
vP (Φt(Xa), t) if a ∈ Inu \ I̊nu
0 otherwise.

Here, δab denotes the Kronecker delta, and

atν(u,w) = ν

∫
Ωt

(
∇xu+ (∇xu)T

)
: ∇xw dx

bt(u1, u2, w) =

∫
Ωt

(u1 · ∇xu2)w dx.

In hindsight, it is now evident that (17) is a discretization of the equations (8-9) that were alluded
to earlier.

Remark. In the preceding paragraphs, we opted to construct a system of DAEs of dimension
Nu +Np over each short time interval (tn−1, tn], even though a portion of those DAEs correspond
to degrees of freedom in the background mesh that do not belong to Snh . This was accomplished
by incorporating the set of trivial DAEs ua(t) = 0 for a /∈ Inu and pk(t) = 0 for k /∈ Inp into the
system via the prescriptions Ku,ab(t) = δab for a /∈ Inu and Zkl(t) = δkl for k /∈ Inp , respectively.
The boundary conditions ua(t) = vP (Φt(Xa), t) for a ∈ Inu \ I̊nu were incorporated similarly via
the prescriptions of Ku(t) and f(t).

We did this to highlight an important feature of the universal mesh: it permits the use of the same
data structures (e.g., the matrices M(t) and K(t)) over the complete duration of the simulation, not
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HIGH-ORDER METHODS FOR FLOWS AROUND MOVING OBSTACLES 9

merely over the intervals during which the mesh evolves continuously. The sparsity patterns of these
data structures are invariant since the connectivity of the background mesh never changes.

Having said that, it is worth noting that one could, in principle, choose to replace the background
mesh with a new one satisfying (3.i-3.iv) at any temporal node tn. Such a strategy may be useful
if, for example, a local refinement or coarsening is desired at a particular stage of the simulation.
Needless to say, the sizes and sparsity patterns of the data structures would generally change in this
scenario. However, the theory presented in [66] suggests that the order of accuracy of the method
is maintained as long as such replacements of the background mesh occur a number of times that
remains bounded under refinement.

3.3. Initial Condition on each Short Time Interval

In order to complete the prescription of (u(t),p(t)) over a short time interval (tn−1, tn], the system
of DAEs (17) must be supplemented with an initial condition u(tn−1

+ ). Note that an initial condition
for the pressure p is unnecessary.

Since the spaces Vtn−1

h and Vt
n−1
+

h generally need not coincide, a projection is needed in order
transfer information between finite element spaces. To this end, we set

uh(·, tn−1
+ ) = i

tn−1
+

h uh(·, tn−1), (18)

where ith is the nodal interpolant onto Vth [62, Chapter 1]. The corresponding vector u(tn−1
+ ) then

consists of the coefficients ua(tn−1
+ ) in the expansion (15).

We remark that more generally, one may consider the use of other surjective, linear projectors
onto Vth, such as the orthogonal projector onto Vth with respect to the L2- or H1-inner products. The
theory presented in [66] supports the use of the L2-projection, though the use of interpolation has
always proven satisfactory in our numerical examples.

The influence of repeated projections such as (18) on the accuracy of the method is analyzed
in [66, 67] and discussed in [63]. In brief, the projections introduce a half-order reduction in the
method’s order of accuracy in the L2-norm for linear parabolic problems when the L2-projector is
adopted. Conservation of total energy and momentum are of course also influenced, and it may be
desirable in some situations to consider projectors designed with these considerations in mind; see,
for example [68].

3.4. Temporal Discretization

The setup we have described thus far offers the freedom to employ a time integrator of one’s
choosing to numerically integrate (17), a system of DAEs of index 2, from t = tn−1 to t = tn.
Below we present two examples of integration schemes: a Singly Diagonally Implicit Runge-Kutta
(SDIRK) scheme [69, 70], and a fractional step scheme [71–73]. In accordance with common
guidelines for numerically solving DAEs, the SDIRK schemes we consider are stiffly accurate (and
hence L-stable) methods [70, 74]. The same schemes are considered by, for instance, [75, 76], in
their studies of high-order methods for the Navier-Stokes equations on fixed domains.

For the forthcoming discussion, we remind the reader that the temporal nodes tn demarcate
changes in the reference triangulation Snh ; hence, the time step ∆t adopted during integration
from tn−1 to tn must be less than or equal to tn − tn−1 for every n. In practice, we often take
∆t = tn − tn−1, though this is by no means a necessity. Recall also that, in accordance with (3.iv),
the time intervals (tn − tn−1) scale with the mesh spacing h.

Singly Diagonally Implicit Runge-Kutta. Consider the use of a stiffly accurate s-stage Singly
Diagonally Implicit Runge-Kutta (SDIRK) scheme of order ≤ s with a time step ∆t ≤ (tn −
tn−1). At a given time τ0 ∈ [tn−1, tn], such an integrator advances the current numerical solution
(u0,p0) ≈ (u(τ0+),p(τ0+)) to time t = τ0 + ∆t by solving a sequence of s systems of equations,
as detailed below. The coefficients γ > 0 and βij ∈ R, i = 1, 2, . . . , s, j = 0, 1, . . . , i− 1, for various
SDIRK methods are tabulated in B, Tables I-IV.
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10 E. S. GAWLIK, H. KABARIA, A. J. LEW

Algorithm 3.1 SDIRK scheme for integration from t = τ0 ∈ [tn−1, tn] to t = τ0 + ∆t ∈ [tn−1, tn].

Require: Initial condition (u0,p0) ≈ (u(τ0+),p(τ0+)).
1: for i = 1, 2, . . . , s do
2: Set

τi =

i−1∑
j=0

βijτj + γ∆t

and

u∗ =

i−1∑
j=0

βijuj .

3: Solve

(M(τi) + γ∆tK(τi))

(
ui
pi

)
+ γ∆t

(
b(ui, τi)

0

)
= M(τi)

(
u∗
0

)
+ γ∆t

(
f(τi)

0

)

for
(
ui
pi

)
.

4: end for
5: return (us,ps) ≈ (u(τ0 + ∆t),p(τ0 + ∆t)).

Pragmatically, implementing an SDIRK method amounts to computing s “backward-Euler” steps,
with the initial condition at the ith stage given by a linear combination of the solutions at the previous
stages. Also, notice that the deformed mesh Sh(t) is constructed at each one of the s stages of the
integration step, namely, for t ∈ {τ1, . . . , τs}.

Fractional Step Scheme. Our second example of a time integrator is a fractional step scheme
with a time step ∆t ≤ (tn − tn−1). The scheme we propose is an adaptation of classical fractional
step schemes [71–73] to the setting in which the fluid domain evolves with time.

At a given time τ0 ∈ [tn−1, tn], the fractional step scheme that we propose advances the
current numerical solution u0 ≈ u(τ0+) to time t = τ0 + ∆t using a sequence of three steps.
First, a preliminary approximation u∗ ≈ u(τ0 + ∆t) that need not satisfy the incompressibility
constraint is computed. Next, u∗ is projected onto the space of divergence-free vector fields by
solving a Neumann problem for an auxiliary variable φ, leading to a divergence-free quantity
u1 ≈ u(τ0 + ∆t) that serves as the time-∆t advancement of u0. Finally, an approximation p1/2

to the pressure at t = τ0 + ∆t/2 is computed.
To present the scheme in detail, we denote by Mp(t) and Kp(t) theNp ×Np matrices with entries

Mp,kl(t) =


∫

Ωt

mt
km

t
l dx if k ∈ Inp , l ∈ Inp

0 otherwise

Kp,kl(t) =


∫

Ωt

∇xmt
k · ∇xmt

l dx if k ∈ Inp , l ∈ Inp

δkl otherwise.

We denote τ1/2 = τ0 + ∆t/2, and we use p̄1/2 to denote a preliminary approximation to p(τ1/2),
which will be specified shortly. The details of the algorithm follow.
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HIGH-ORDER METHODS FOR FLOWS AROUND MOVING OBSTACLES 11

Algorithm 3.2 Fractional step scheme for integration from t = τ0 ∈ [tn−1, tn] to t = τ0 + ∆t ∈
[tn−1, tn].

Require: Initial condition u0 ≈ u(τ0+), and preliminary approximation p̄1/2 ≈ p(τ1/2).
1: Solve

Mu(τ1/2)
(u∗ − u0

∆t

)
+ Ku(τ1/2)

(u0 + u∗
2

)
+ C̊(τ1/2)T p̄1/2

+ b
(u0 + u∗

2
, τ1/2

)
=

f(τ0) + f(τ0 + ∆t)

2

for u∗.
2: With ` = ∆t−1C(τ1/2)u∗, solve

Kp(τ1/2)φ = `

for φ.
3: Set

u1 = u∗ −∆tMu(τ1/2)−1C̊(τ1/2)Tφ

p1/2 = p̄1/2 + φ+
ν∆t

2
Mp(τ1/2)−1`.

4: Return (u1,p1/2) ≈ (u(τ0 + ∆t),p(τ0 + ∆t/2)).

The precise choices that we made in the update formulas (the boundary conditions imposed on
u∗, the boundary conditions imposed onφ, and the update to the pressure) correspond to those made
by the projection method “PmII” described in [73]. In particular, we prescribe the boundary values
of u∗ with the known values of the velocity field at τ0 + ∆t, we impose homogeneous Neumann
boundary conditions on φ, and we use a pressure update that is known to deliver second-order
accuracy in time for both the velocity and pressure variables in the case of a fixed domain.

To understand the origin of the preceding scheme, it is instructive to consider its spatially
continuous, temporally discrete counterpart on a fixed domain (Ωt = Ω0 = D \ P 0 ∀t). In this
setting, Algorithm 3.2 reduces to the following scheme, where we denote by u0, u∗, u1, φ, p1/2,
and p̄1/2 the spatially continuous counterparts of u0,u∗,u1,φ,p1/2, and p̄1/2, respectively:

1. Solve

u∗ − u0

∆t
− ν

2
(∆xu0 + ∆xu∗) +∇xp̄1/2 +

u0 + u∗
2

· ∇x
u0 + u∗

2
= 0 in Ω0 (19)

u∗ = 0 on ∂D (20)

u∗ = vP (·, τ0 + ∆t) on ∂P 0 (21)

for u∗.

2. Solve

∆t∆xφ = ∇x · u∗ in Ω0

∂φ

∂n
= 0 on ∂Ω0

for φ.

3. Set

u1 = u∗ −∆t∇xφ (22)

p1/2 = p̄1/2 + φ− ν∆t

2
∆xφ. (23)
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12 E. S. GAWLIK, H. KABARIA, A. J. LEW

As mentioned earlier, the scheme above is precisely the second-order method “PmII” of [73]. We
have numerical evidence (cf. Section 4.1) and heuristic reasoning to suggest that our extension of
the method to moving domains is likewise second-order accurate in time, though a justification of
this assertion warrants further analysis.

Note that in step 2 of the algorithm, the linear system to be solved for φ is singular, as it
corresponds to a Neumann problem whose solution is determined up to the addition of a constant.
This is because for boundary conditions (3) and (5), the pressure is defined up to a constant. Defining
φ unambiguously requires, for example, imposing the value of one entry of the vector φ arbitrarily.
If a boundary condition of the form (4) were to be adopted on part of ∂D, then φ would need to
satisfy homogeneous Dirichlet boundary conditions therein.

Finally, we describe our choice of p̄1/2, which is set to be equal to the last computed value
p−1/2, interpolated onto the appropriate finite element space if necessary. More precisely, we set
p̄1/2 = p−1/2 if τ0 6= tn−1 and p̄1/2 = 0 if τ0 = 0; otherwise, we set p̄1/2 equal to the vector of
coefficients in the expansion

Np∑
k=1

p̄1/2,km
tn−1
+

k = i
tn−1
+

h

 Np∑
k=1

p−1/2,km
tn−1

k

 ,

where, abusing notation, ith denotes the nodal interpolant onto Qth. Note that choosing p̄1/2 = 0 for
τ0 = 0 reduces the accuracy of the very first time step to first order (cf. [73]), however, it is easy
see that (by analogy with multi-step methods for ODEs [70]) this does not reduce the order of the
scheme’s global truncation error.

3.5. Algorithm Summary

A summary of the proposed algorithm for integration over [0, T ] using a universal mesh Th and a
temporal partition 0 = t0 < t1 < · · · < tN = T is as follows.

Algorithm 3.3 Integration over [0, T ] using a universal mesh Th and a temporal partition 0 = t0 <
t1 < · · · < tN = T .
Require: Initial condition u(0).

1: for n = 1, 2, . . . , N do
2: Identify the subtriangulation Snh of Th consisting of triangles with at least one vertex lying

inside Ωt
n−1

.
3: Adapt Snh to Ωt

n−1

by computing Sh(tn−1
+ ) := Φt

n−1
+ (Snh ), where Φt : Snh → Ωt is the universal

mesh map (29).

4: Project u(tn−1) onto the finite element space Vt
n−1
+

h associated with Sh(tn−1
+ ), through (18),

giving u(tn−1
+ ).

5: Numerically integrate (17) from t = tn−1
+ to t = tn using a time integrator of one’s choosing

with time step ∆t ≤ (tn − tn−1), giving (u(tn),p(tn)).
6: end for
7: return (u(T ),p(T ))

Remarks.

1. In the last step of the algorithm, the numerical integration may require the evaluation of
Sh(t) = Φt(Snh ) at intermediate times t ∈ (tn−1, tn] in order to assemble the quantities M(t),
K(t), b(u(t), t), and f(t) at intermediate stages of integration.

2. When the fractional step scheme (3.2) is adopted for numerical integration, the output of
step (4) in such scheme is (u(tn),p(tn −∆t/2)).
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Figure 3. Velocity magnitude contours for the manufactured solution (24-26) at time t = 0.05.

4. NUMERICAL EXAMPLES

In this section, we apply the proposed methods to simulate flow around various obstacles with
prescribed evolution. We consider three examples of obstacles: a rotating ellipse, an oscillating disk,
and a rotating stirrer. We consider the rotating ellipse in order to study numerically the convergence
of the methods. The remaining examples serve to illustrate the features of the methodology.

4.1. Rotating Ellipse

To study numerically the convergence of the methods, we considered the case in which obstacle P t

is an ellipse with semi-major axis a = 1.0 and semi-minor axis b = 0.8, rotating at a fixed angular
velocity ω = 2.5, as depicted in Fig. 3. Using [77] for inspiration, we manufactured a solution by
adding a forcing term to the right-hand side of (1) so that the exact solution is given by

u1(x1, x2, t) = − a2 + b2√
a4 − b4

ωe−ξ(b cosωt sin η + a sinωt cos η) (24)

u2(x1, x2, t) = − a2 + b2√
a4 − b4

ωe−ξ(b sinωt sin η − a cosωt cos η) (25)

p(x1, x2, t) = sin(x1) sin(x2), (26)

with ξ ≥ 0 and η ∈ [0, 2π) related to the cartesian coordinates x1 and x2 via

x1 cosωt+ x2 sinωt =

√
a4 − b4
a

cosh ξ cos η

−x1 sinωt+ x2 cosωt =

√
a4 − b4
b

sinh ξ sin η.

The velocity field so manufactured has the property that it is everywhere divergence-free and
satisfies the no-slip condition (3) on ∂P t. On the remainder of the fluid boundary, we prescribed
the known values of the velocity field. We took ν = 1.0 so that the Reynolds number of the flow
was Re = u2(a, 0, 0)a/ν = 2.5.

We studied the L2-error in u and p at time T = 0.05 on a sequence of uniform refinements of an
equilateral triangle mesh with a lowest resolution mesh spacing of h0 = 0.25, using a time step
∆t = Th/h0 and a temporal subdivision tn = n∆t, n = 0, 1, 2, . . . , T/∆t. We considered three
combinations of finite elements and time integrators: Taylor-Hood P2-P1 elements together with
the fractional step scheme (3.2),† Taylor-Hood P2-P1 elements together with an SDIRK scheme of

†In the case of the fractional step scheme, the error in p was measured at t = T − ∆t/2 rather than at t = T .
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P2-P1 / Fractional step P2-P1 / SDIRK(3) P3-P2 / SDIRK(4)

Velocity P2-P1 / Fractional step P2-P1 / SDIRK(3) P3-P2 / SDIRK(4)
h0/h Error Order Error Order Error Order

1 1.91e-02 - 3.75e-03 - 9.53e-04 -
2 4.63e-03 2.04 5.75e-04 2.71 5.16e-05 4.21
4 1.26e-03 1.88 8.98e-05 2.68 4.47e-06 3.53
8 3.24e-04 1.96 1.23e-05 2.87 - -

Expected Order 1.5 2.5 3.5

Pressure P2-P1 / Fractional step P2-P1 / SDIRK(3) P3-P2 / SDIRK(4)
h0/h Error Order Error Order Error Order

1 3.01e-01 - 1.52e-02 - 2.64e-03 -
2 5.61e-02 2.42 2.81e-03 2.43 2.71e-04 3.28
4 1.72e-02 1.71 6.63e-04 2.09 4.28e-05 2.66
8 4.89e-03 1.81 1.83e-04 1.85 - -

Expected Order 1.5 1.5 2.5

Figure 4. Convergence rates in the L2(ΩT )-norm for the solution to incompressible, viscous flow around a
rotating ellipse using three combinations of finite elements and time integrators with ∆t ∝ h: (1) Taylor-
Hood P2-P1 elements together with the fractional step scheme (3.2), (2) Taylor-Hood P2-P1 elements
together with a third-order implicit Runge-Kutta scheme, and (3) Taylor-HoodP3-P2 elements together with
a fourth-order implicit Runge-Kutta scheme. Also shown in the tables are expected orders of convergence

inferred from the theory presented in [63, 66].

order 3 (cf. Table III), and Taylor-Hood P3-P2 elements together with an SDIRK scheme of order 4
(cf. Table IV). The resulting spatial discretizations for h0/h = 1, 2, 4, and 8, respectively, had 1,851,
7,155, 28,131, and 111,555 degrees of freedom (for P2-P1 elements) and 4,419, 17,283, 68,355, and
271,875 degrees of freedom (for P3-P2 elements). For each of the combinations of finite elements
and time integrators considered, we observed convergence rates that are at worst suboptimal by half
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(a) Background mesh (b) Conforming mesh at t = π/(2ω)

(c) Close-up of conforming mesh at
t = 0

(d) Close-up of conforming mesh at
t = π/(2ω)

(e) Close-up of conforming mesh at
t = π/ω

Figure 5. Universal mesh for a disk with unit diameter oscillating with amplitude A = 0.1 and frequency ω.

an order. These results are consistent with the predictions of [63,66,67], which derive a priori error
estimates that are suboptimal by half an order in the L2-norm for schemes that adopt a universal
mesh in conjunction with piecewise polynomial finite element spaces to solve a parabolic model
problem.

4.2. Oscillating Disk

As a second example, we considered the case in which the obstacle P t is a disk of radius R = 1/2
whose center oscillates vertically with amplitude A and frequency ω about a point (x0, y0) =
(−3, 0):

P t = {(x, y) | (x− x0)2 + (y − y0 +A cos(ωt))2 < R2}.

We immersed the oscillating disk in a domain D = [−6, 6]× [−3, 3] and prescribed boundary
conditions

u =
(
u∞(1− e−t/2), 0

)
on [−6, 6]× {−3} ∪ [−6, 6]× {3} ∪ {−6} × [−3, 3]

pn− ν
(
∇xu+ (∇xu)T

)
n = 0 on {6} × [−3, 3].

u = (0, ωA sin(ωt)) on ∂P t,

where u∞ = 1/2.
Fig. 5 shows the universal mesh that we adopted for this simulation, as well as snapshots of the

resulting conforming mesh for Ωt = D \ P t at a few representative instants in time when A = 0.1.
The background mesh was constructed by inserting stencils of acute triangles into an adaptively
refined quadtree; see [78] for details.

We first considered the cases in which A = 0.1 and ω = 0.8ω0, ω0, and 1.2ω0, where ω0 is the
natural vortex shedding frequency for flow past a fixed disk of radiusR, assuming a Strouhal number
St = (ω0/2π)(2R)/u∞ = 0.195. We took ν = 1/370 so that Re = (2R)u∞/ν = 185. We solved
the problem using Taylor-Hood P2-P1 elements (leading to 18,701 degrees of freedom) together
with the fractional step scheme (3.2), using ∆t = 0.2 and tn = n∆t. Figs. 6-7 show contours of the
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16 E. S. GAWLIK, H. KABARIA, A. J. LEW

(a) ω/ω0 = 0.8

(b) ω/ω0 = 1

(c) ω/ω0 = 1.2

Figure 6. Vorticity contours during flow past a disk with unit diameter oscillating with amplitude A = 0.1
and frequency (a) ω = 0.8ω0, (b) ω = ω0, and (c) ω = 1.2ω0. The snapshot shown in each case corresponds
to the largest time t < 80 for which the disk’s vertical displacement is−A. A characteristic shift in the vortex

shedding pattern’s phase relative to the disk’s oscillation occurs as ω passes through ω0.

vorticity ∇x × u and the pressure p in each of the three cases at the largest time t < 80 for which
the disk’s vertical displacement is −A. We observed a characteristic shift in the vortex shedding
pattern’s phase relative to the disk’s oscillation as ω passed through ω0, which is consistent with
past numerical and experimental studies of flow past an oscillating disk [79, 80].

Next, we fixed ω = 0.8ω0 and A = 0.2 and studied the temporal evolution of the drag coefficient
CD and the lift coefficient CL for the cases in which ν = 1/2 (so that Re = 1) and ν = 1/370
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(a) ω/ω0 = 0.8

(b) ω/ω0 = 1

(c) ω/ω0 = 1.2

Figure 7. Pressure contours during flow past a disk with unit diameter oscillating with amplitudeA = 0.1 and
frequency (a) ω = 0.8ω0, (b) ω = ω0, and (c) ω = 1.2ω0. These snapshots correspond to the same instants

in time as in Fig. 6.

(so that Re = 185). Figs. 8-9 show the drag and lift coefficients obtained using meshes obtained
from uniform refinements of the mesh depicted in Fig. 5, whose maximum element diameter is
h0 := 0.58. We used Taylor-Hood P2-P1 elements together with a 3rd-order SDIRK scheme (cf.
Table III), taking ∆t = 0.1h/h0 and tn = n∆t. The resulting spatial discretizations had 18,701
and 74,335 degrees of freedom for h0/h = 1, 2, respectively. The drag and lift coefficients were
computed by direct integration over the boundary of the cylinder.
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Figure 8. Drag and lift coefficients during flow past an oscillating disk at Re = 1. The results of two
simulations are plotted, one corresponding to the mesh in Fig. 5 and one corresponding to a refinement

thereof.
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Figure 9. Drag and lift coefficients during flow past an oscillating disk at Re = 185. The results of two
simulations are plotted, one corresponding to the mesh in Fig. 5 and one corresponding to a refinement

thereof.

For Re = 185 (Fig. 9), the simulation on the coarsest mesh exhibits spurious oscillations of the
drag and lift coefficients, but these are significantly reduced upon refinement. We suspect that the
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CD (Re = 1)

CL (Re = 1)

CD (Re = 185)

CL (Re = 185)

Figure 10. Convergence of the drag and lift coefficient time series under mesh refinement. The reported error
E is the square root of (a rectangle-rule approximation of) the integrated squared error (Ci(t)− C̄i(t))2,
i = L,D, over the interval [0, 1], relative to a reference solution C̄i(t) obtained from a fine mesh with

h = 0.145.

oscillations are attributable to the interpolation of the solution onto a new finite element space at
each time tn (cf. Section 3.3), since identical numerical experiments with a fixed disk rendered
drag and lift coefficient time series that were free of artificial oscillations. Diffusion seems to also
play a role in mitigating the artificial oscillations, as evidenced by their absence in Fig. 8, where
Re = 1. Based upon these observations, it may be worthwhile to explore the possibility of designing
more sophisticated strategies for transferring information between finite element spaces, such as
projecting the velocity onto the space of divergence-free vector fields after interpolating, in order to
obtain more satisfactory results on coarse meshes at high Reynolds numbers.

Fig. 10 shows the convergence of the computed drag and lift coefficients under the
aforementioned mesh refinement. To measure the errors in the time series, we computed a rectangle-
rule approximation E to the integrated error(∫ 1

0

(CD(t)− C̄D(t))2 dt

)1/2

between the computed solution CD(t) and a reference solution C̄D(t) obtained from a fine mesh
with h = 0.145, and likewise for the lift coefficient. The errors in all cases converged to zero at rates
approximately of the order h1.5.

4.3. Stirring a Viscous Fluid

Our last example considers the case in which the obstacle boundary is a closed cubic spline in the
shape of a propeller-like stirrer that rotates at a prescribed angular velocity

ω(t) = ω0(1− e−t/τ ) (27)

with ω0 = 5.0 and τ = 0.01. The stirrer blades were of length ≈ 1.4 and average width ≈ 0.3. We
took ν = 0.2 in our simulations, so that the Reynold’s number of the flow (treating the stirrer blade
width as the characteristic length scale) was approximately 10.5. To approximate the velocity and
pressure, we adopted Taylor-HoodP2-P1 elements. To integrate in time, we used an SDIRK scheme
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(a) Background mesh (b) Mesh at t = 0.

(c) Mesh at t = 0.125. (d) Mesh at t = 0.25.

Figure 11. Universal mesh for a rotating stirrer.

of order 3. We immersed the stirrer in hexagonal domain D of diameter 4 and imposed Neumann
boundary condtions (4) on ∂D. We adopted a uniform background mesh of equilateral triangles
(h = 0.0625, 18,701 degrees of freedom).

Figs. 11 and 12 display snapshots of the mesh and velocity magnitude contours, respectively, at
various times during the simulation. The robust nature of the methods introduced here is patent in
this example, as traditional deforming-mesh methods could easily encounter difficulties with mesh
entanglement upon rotation of the stirrer.

5. CONCLUDING REMARKS

We have presented a framework for computing incompressible, viscous flow around a moving
obstacle with prescribed evolution using a universal mesh. By immersing the obstacle in a
background mesh and adjusting a few elements in the neighborhood of obstacle’s boundary, the
strategy provides a conforming triangulation of the fluid domain at all times over which a spatial
discretization of the fluid velocity and pressure fields of any desired order may be constructed
using standard finite elements. The resulting semidiscrete equations may be integrated in time using
standard time integrators for ODEs. We illustrated the framework using Taylor-Hood finite elements
together with Runge-Kutta time integrators and a fractional step scheme. Numerical convergence
tests confirmed the theory presented in [63, 66], which predicts orders of convergence that are
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(a) t = 0 (b) t = 0.125

(c) t = 0.25 (d) t = 0.375

Figure 12. Velocity magnitude contours during a simulation of stirring of a viscous fluid.

suboptimal by half an order in the L2-norm for a model parabolic problem. We demonstrated
the method’s versatility on numerical examples that involve flow past an oscillating disk and flow
around a rotating stirrer.

All examples in the manuscript involved flows with low-to-moderate Reynolds number. This
enabled us to obtain accurate solutions with relatively coarse and isotropic meshes. For larger
Reynolds numbers, we expect to have to modify the spatial discretization by including a stabilization
of the advection term. More importantly, meshes will have to be anisotropic and refined around the
boundary of the moving obstacle, to capture the boundary layer. Doing it with a universal mesh is
an open problem.
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A. THE UNIVERSAL MESH MAP

In this section, we detail the construction of the map Φt : Snh → Ωt introduced in Section 3.1. We require
the definition of three auxiliary maps: a boundary evolution map, a relaxation map, and a blend map. In
what follows, we denote by φt : D → R the signed distance function to ∂Ωt, taken to be positive outside Ωt

and negative inside Ωt. We denote by πt : D → ∂Ωt the closest point projection onto ∂Ωt.

Auxiliary Maps. The boundary evolution map γt : ∂Snh → ∂Ωt provides a correspondence between the
piecewise linear boundary of Snh and the boundary of Ωt for t ∈ (tn−1, tn]. It is defined in terms of the
closest point projection via

γt = πt ◦ πt
n−1
∣∣∣
∂Sn

h

.

The relaxation map p : Snh → S
n
h identifies those vertices that lie both inside Ωt and near ∂Ωt, and

perturbs them in a direction away from ∂Ωt. It is defined in terms of the signed distance function via

p(x) =

x− δh
(

1 +
φtn−1

(x)
Rh

)
∇xφt

n−1

(x) if −Rh < φt
n−1

< 0

x otherwise,

with R > 1 a small positive integer and (1 + 1/R)−1 ≤ δ ≤ 1. We denote by p(Snh ) the triangulation
obtained by applying the relaxation p to the vertices of Snh while preserving the mesh’s connectivity.

The blend map ψt takes each straight triangle K ∈ p(T t
n−1

h,2 ) and deforms it to a curved triangle that
conforms exactly to the moving boundary. Letting u, v, w denote the vertices of K, the blend map reads

ψt(x) =
1

2(1− λu)
[λvγ

t(λuu+ (1− λu)v) + λuλwγ
t(u)]

+
1

2(1− λv)
[λuγ

t((1− λv)u+ λvv) + λvλwγ
t(v)] + λww, (28)

where λu, λv, λw are the barycentric coordinates of x ∈ K. Here, we have employed the convention that the
vertex w is the unique vertex of K lying inside Ωt

n−1

.

The Universal Mesh Map. We now define Φt over each triangleK ∈ Snh with vertices u, v, w according
to

Φt(x) =


λup(u) + λvp(v) + λwp(w) if K ∈ T t

n−1

h,0

λuγ
t(u) + λvp(v) + λwp(w) if K ∈ T t

n−1

h,1

ψt(λuu+ λvv + λwp(w)) if K ∈ T t
n−1

h,2 ,

(29)

where λu, λv, λw are the barycentric coordinates of x ∈ K. Once again, we have employed the convention
that for triangles K ∈ T t

n−1

h,2 , the vertex w is the unique vertex of K lying inside Ωt
n−1

, and for triangles

K ∈ T t
n−1

h,1 , the vertex u is the unique vertex of K lying outside Ωt
n−1

.
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Table I. SDIRK(1): Coefficients βij for a s = 1-stage SDIRK scheme of order 1. (γ = 1)

i \ j 0

1 1

Table II. SDIRK(2): Coefficients βij for a s = 2-stage SDIRK scheme of order 2. (γ = 1−
√

2/2)

i \ j 0 1

1 1

2 −
√

2 1 +
√

2

Table III. SDIRK(3): Coefficients βij for a s = 3-stage SDIRK scheme of order 3. (γ =
0.43586652150845899942)

i \ j 0 1 2

1 1.00000000000000000

2 0.352859819860479140 0.647140180139520860

3 −1.25097989505606042 3.72932966244456977 −1.47834976738850935

Table IV. SDIRK(4): Coefficients βij for a s = 5-stage SDIRK scheme of order 4. (γ = 1/4)

i \ j 0 1 2 3 4

1 1

2 −1 2

3 − 13
25

42
25 − 4

25

4 − 4
17

89
68 − 25

136
15
136

5 7
3 − 37

12 − 103
24

275
8 − 85

3

Isoparametric Approximations. In practical computations, it is convenient to approximate the map
Φt (and hence the domain Ωt) with a polynomial interpolant

Φtapprox(x) =
∑
a

Ña(x)Φt(X̃a) (30)

constructed from shape functions Ña of a triangular Lagrange element with corresponding degrees of
freedom X̃a on the reference triangulation Snh . Details are given in [63].

Assembly of the quantities M(t), K(t), b(u(t), t), and f(t) at a given time t ∈ (tn−1, tn] can then
be accomplished by computing the positions Φt(X̃a) of the degrees of freedom in the (approximately)
conforming mesh Φtapprox(Snh ) and following standard practices to compute elementwise contributions over
curved isoparametric elements [62]. We adopted this strategy in all of the numerical examples presented in
this paper.

B. SINGLY DIAGONALLY IMPLICIT RUNGE KUTTA TIME INTEGRATORS.

Tables I-IV record the coefficients γ > 0 and βij ∈ R, i = 1, 2, . . . , s, j = 0, 1, . . . , i− 1 for a collection of
SDIRK schemes of orders 1 through 4. Note that the structure of the Runge-Kutta stages in Algorithm (3.1)
differs from the structure that is most familiar to Runge-Kutta practitioners [70]; see [63, Appendix A]
and [81] for details.
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