
High-Order Finite Element Methods for Moving Boundary

Problems with Prescribed Boundary Evolution

Evan S. Gawlika, Adrian J. Lewb,a

aComputational and Mathematical Engineering, Stanford University
bMechanical Engineering, Stanford University

Abstract

We introduce a framework for the design of finite element methods for two-dimensional
moving boundary problems with prescribed boundary evolution that have arbitrarily high
order of accuracy, both in space and in time. At the core of our approach is the use of a
universal mesh: a stationary background mesh containing the domain of interest for all times
that adapts to the geometry of the immersed domain by adjusting a small number of mesh
elements in the neighborhood of the moving boundary. The resulting method maintains
an exact representation of the (prescribed) moving boundary at the discrete level, or an
approximation of the appropriate order, yet is immune to large distortions of the mesh
under large deformations of the domain. The framework is general, making it possible
to achieve any desired order of accuracy in space and time by selecting a preferred and
suitable finite-element space on the universal mesh for the problem at hand, and a preferred
and suitable time integrator for ordinary differential equations. We illustrate our approach
by constructing a particular class of methods, and apply them to a prescribed-boundary
variant of the Stefan problem. We present numerical evidence for the order of accuracy of
our schemes in one and two dimensions.

Keywords: Moving boundary, universal mesh, free boundary, ALE, Stefan problem

1. Introduction

Science and engineering are replete with instances of moving boundary problems: partial
differential equations posed on domains that change with time. Problems of this type, which
arise in areas as diverse as fluid-structure interaction, multiphase flow physics, and fracture
mechanics, are inherently challenging to solve numerically.

Broadly speaking, computational methods for moving boundary problems generally ad-
here to one of two paradigms. Deforming-mesh methods employ a computational mesh that
deforms in concert with the moving domain, whereas fixed-mesh methods employ a station-
ary background mesh in which the domain is immersed. While the former approach can
require that efforts be made to avoid distortions of the mesh under large deformations [1],
the latter approach requires that special care be taken in order to account for any discrep-
ancy between the exact boundary and element interfaces [2, 3]. Figs. 1-2 illustrate these two

Email addresses: egawlik@stanford.edu (Evan S. Gawlik), lewa@stanford.edu (Adrian J. Lew)

Preprint submitted to Computer Methods in Applied Mechanics and Engineering January 27, 2014

(a) t = 0 (b) t > 0

Figure 1: Schematic depiction of a deforming-mesh method. Without a careful choice of nodal motions,
elements can suffer unwanted distortions under large deformations of the moving domain.2

paradigms schematically.
In this study, we eliminate these difficulties by employing a universal mesh: a stationary

background mesh that adapts to the geometry of the immersed domain by adjusting a small
number of mesh elements in the neighborhood of the moving boundary. An example is
illustrated in Fig. 3. The resulting framework admits, in a general fashion, the construction
of methods that are of arbitrarily high order of accuracy in space and time, without exhibiting
the aforementioned drawbacks of deforming-mesh and fixed-mesh methods. This strategy
was introduced for time-independent and quasi-steady problems in [4, 5]. Here we present its
extension to time-dependent problems posed on moving domains with prescribed evolution.
We relegate a discussion of problems with unprescribed boundaries to future work, since the
treatment of unprescribed boundaries introduces its own set of challenges – approximation
of the boundary, discretization of the boundary evolution equations, and error analysis on
approximate domains – that may have the undesired effect of blurring the focus of the present
study.

In the process of deriving our method, we present a unified, geometric framework that
puts our method and existing deforming-mesh methods on a common footing suitable for
analysis. The main idea is to recast the governing equations on a sequence of cylindrical
spacetime slabs that span short intervals of time. The clarity brought about by this geometric
viewpoint renders the analysis of numerical methods for moving-boundary problems more
tractable, as it reduces the task to a standard analysis of fixed-domain problems with time-
dependent PDE coefficients.

2Here, for purely illustrative purposes, we have employed a nodal mapping of the form (r, θ) 7→ (f(θ)r, θ)
in polar coordinates.

2

(a) t = 0 (b) t > 0

Figure 2: Schematic depiction of a fixed-mesh method. Such methods employ a fixed background mesh
which does not conform to the immersed domain.

Organization. This paper is organized as follows. We begin in §2 by giving an informal
overview of our method, and illustrating the ideas by formulating the method for a moving
boundary problem in one spatial dimension. We formulate a two-dimensional model moving
boundary problem on a predefined, curved spacetime domain in §3, and proceed to derive
its equivalent reformulation on cylindrical spacetime slabs. In §4 we present, in an abstract
manner, the general form of a finite-element discretization of the same moving boundary
problem, as well as its reformulation on cylindrical spacetime slabs. This formalism will lead
to a statement of the general form of a numerical method for moving boundary problems
with prescribed boundary evolution that includes our method and conventional deforming-
mesh methods as special cases. We finish §4 by summarizing an error estimate for methods
of this form, referring the reader to our companion paper [6] for its proof. In §5, we present
the key ingredient that distinguishes our proposed method from standard approaches: the
use of a universal mesh. We specialize the aforementioned error estimate to this setting
to deduce that the method’s convergence rate is suboptimal by half an order when the
time step and mesh spacing scale proportionately. In §6 we demonstrate numerically our
method’s convergence rate on a prescribed-boundary variant of a classic moving-boundary
problem called the Stefan problem, which asks for the evolution of a solid-liquid interface
during a melting process. Some concluding remarks are given in §7.

Previous work. In what follows, we review some of the existing numerical methods for
moving-boundary problems, beginning with deforming-mesh methods and finishing with
fixed-mesh methods.

Deforming-mesh methods have enjoyed widespread success in the scientific and engi-
neering communities, where they are best known as Arbitrary Lagrangian Eulerian (ALE)
methods. The appellation refers to the fact that in prescribing a motion of the mesh, a
kinematic description of the physics is introduced that is neither Eulerian (in which the

3

(a) t = 0 (b) t > 0

Figure 3: Schematic depiction of a universal mesh. By adapting the mesh to the immersed domain, one
obtains a mesh that conforms to the domain exactly and is immune to large distortions of elements.

domain moves over a fixed mesh) nor Lagrangian (in which the domain does not move with
respect to the mesh). The resulting formalism leads to governing equations that contain
a term involving the velocity of the prescribed mesh motion that is otherwise absent in
schemes on a fixed mesh [7, 8]. Early appearances of the ALE framework date back to the
works of Hirt et. al. [9], Hughes et. al. [10], and Donea et. al. [11]. ALE methods have seen
use in fluid-structure interaction [12, 13, 14, 15, 16, 17], solid mechanics [18, 19, 20, 21],
thermodynamics [22, 23, 24, 25], and other applications.

Relative to methods for problems with fixed domains, less attention has been directed
toward the development of ALE methods of high order of accuracy and the associated error
analysis. Schemes of second-order in time are well-studied [15, 16, 13, 26, 27, 28, 29, 30],
though the analysis of higher-order schemes has only recently been addressed by Bonito and
co-authors [31, 32], who study the spatially continuous setting with discontinuous Galerkin
temporal discretizations.

One of the key challenges that ALE methods face is the maintenance of a good-quality
mesh during large deformations of the domain [33, 34]. Fig. 1 illustrates a case where, using
an intentionally naive choice of nodal motions, a domain deformation can lead to triangles
with poor aspect ratios. In more severe cases, element inversions can occur. Such distortions
are detrimental both to the accuracy of the spatial discretization and to the conditioning
of the discrete governing equations [35]. For this reason, it is common to use sophisticated
mesh motion strategies that involve solving systems of equations (such as those of linear
elasticity) for the positions of mesh nodes [36, 37, 38, 39].

A related class of methods are spacetime methods (e.g., [40]), where the spacetime domain
swept out by the moving spatial domain is discretized with straight or curved elements.
These methods resemble deforming-mesh methods in the sense that spatial slices of the
spacetime mesh at fixed temporal nodes constitute a mesh of the moving domain at those
times. Bonnerot and Jamet [41, 42] have used a spacetime framework to construct high-

4

order methods for the Stefan problem in one dimension. They require the use of curved
elements along the moving boundary to achieve the desired temporal accuracy. Jamet [43]
provides a generalization of these high-order methods to dimensions greater than one in the
case that the boundary evolution is prescribed in advance. More recently, Rhebergen and
Cockburn [44, 45] created hybridizable-discontinuous-Galerkin-based spacetime methods for
advection-diffusion and incompressible flow problems with moving domains.

At the other extreme are fixed-mesh methods, which cover a sufficiently large domain
with a mesh and evolve a numerical representation of the boundary, holding the background
mesh fixed [46, 47, 48, 49]. A variety of techniques can be used to represent the boundary,
including level sets [50, 2], marker particles [51], and splines [52]. Fixed mesh methods require
that special care be taken in constructing the numerical partial differential operators in the
neighborhood of the moving boundary, so as to avoid losses in accuracy arising from the
disagreement between the moving boundary and element interfaces. Some authors [53, 54]
propose adaptively refining the mesh in the neighborhood of the moving boundary to mitigate
these losses. In the special case of a cartesian mesh, Gibou and Fedkiw [2] have developed
a third-order method for the Stefan problem in two dimensions using extrapolation to allow
finite-difference stencils to extend beyond the moving boundary.

The method presented in this paper classifies neither as a deforming-mesh method nor as
a fixed-mesh method, though it shares attractive features from both categories. It exhibits
the immunity to large mesh distortions enjoyed by fixed-mesh methods without sacrificing
the geometric conformity offered by deforming-mesh methods. Despite its conceptual sim-
plicity, the method has not been proposed in the literature. An idea similar to ours, dubbed
a “fixed-mesh ALE” method, has recently been proposed by Baiges and Codina [55, 56],
though there are several important differences. In particular, their method uses element
splitting to define intermediate meshes during temporal integration, whereas our method
leaves the connectivity of the mesh intact. Second, they advocate imposing boundary condi-
tions approximately to improve efficiency; our method imposes boundary conditions exactly
without extra computational effort. Finally, they focus only on low-order schemes with piece-
wise linear approximations to the domain deformation, while we derive schemes of arbitrarily
high order.

2. Overview of the method

There are three main difficulties to overcome in constructing high-order methods for
problems with moving domains: (a) Since the domain is changing in time, approximations
of the domain of the appropriate order need to be constructed at all times at which the
time-integration scheme is evaluated, (b) the approximation space over the evolving domain
generally needs to evolve in time as well, resulting in a changing set of degrees of freedom,
and (c) the approximation of time-derivatives of the solution near the evolving boundary
needs to be carefully constructed, since solution values at a given spatial location may not
be defined at all time instants within a time step.

Pulling back to a reference domain. A natural approach to sidestep these issues is to refor-
mulate the problem as an evolution in a reference, fixed domain Ω0 through a diffeomorphism
ϕt : Ω0 → Ωt that maps it to the evolving domain Ωt at each time t. If the solution sought is

5

(a) Submesh Snh at t = tn−1 (b) Conforming mesh for Ωtn−1

(c) Advancement to t = tn

(d) Submesh Sn+1
h at t = tn (e) Conforming mesh for Ωtn (f) Advancement to t = tn+1

Figure 4: Sketch of how the reference domain is periodically redefined, and the mesh over it obtained. The
triangles intersected by the domain in (a) are deformed through the universal mesh map to obtain a domain-
matching discretization in (b). The evolution of the domain during (tn−1, tn] is then described through a

map ϕt defined over Ωtn−1

. The deformed mesh due to ϕtn is then shown in (c), where the reference domain

Ωtn−1

is still depicted in light, transparent, gray. These steps are then repeated in (d), (e), and (f), for
the interval (tn, tn+1]. The meshes in (c) and (e) both mesh Ωtn , but since the two differ near the domain
boundary, a projection of the solution is needed to continue the integration in time.

u(x, t), defined over the domain Ωt at each time t, then this approach involves obtaining the
partial differential equation that the function U(X, t) = u(ϕt(X), t), defined over Ω0 at all
times, would satisfy. The obvious advantage of this perspective is that any of the standard
numerical methods constructed for evolution problems on fixed domains can now be applied,
and hence high-order methods can be easily formulated.

With this idea, the issues associated with discretizing an evolving domain are transformed
into algorithmically constructing and computing the map ϕt. This is not too difficult when
the changes in the domain are small, i.e., when ϕt is close to a rigid body motion for all
times. However, it becomes challenging when ϕt induces large deformations of the domain.
This is the typical problem of Arbitrary Lagrangian-Eulerian methods: how to deform the
mesh, or alternatively, how to construct the ALE map (see Fig. 1). In terms of the map ϕt

these same problems materialize as a loss of local or global injectivity.
A restatement of this same idea from a different perspective is to consider approximation

spaces, such as a finite element spaces, that evolve with the domain. This is precisely what
is obtained if each function in the approximation space over the reference configuration is

6

pushed forward by the map ϕt at each time t. For example, for finite element spaces, each
shape function over Ωt has the form na(ϕ

t(X)) = Na(X), where Na is a shape function in
the finite element space over Ω0. We take advantage of this equivalence throughout this
manuscript.

Construction of maps. One of the central ideas we introduce here is one way to construct
maps ϕt. To circumvent the problems that appear under large deformations, we periodically
redefine the reference domain to be Ωtn , n = 0, 1, . . . , N , tn = nτ for some τ > 0, and
accordingly ϕt : Ωtn → Ωt for t ∈ (tn, tn+1].

The combination of periodically redefining the reference configuration and constructing
a mesh over it with the map proposed here is illustrated in Fig. 4, for a two-dimensional
moving domain Ωt ⊂ R2. Upon choosing a fixed background triangulation Th of a domain
D ⊂ R2 that contains the domains Ωt for all t ∈ [0, T], T = Nτ , the method proceeds
as follows: (a) At each temporal node tn−1, a submesh Snh of Th that approximates Ωtn−1

(Fig. 4(a)) is identified; (b) The polygonal domain meshed by Snh is deformed through the
universal mesh map onto Ωtn−1

(Fig. 4(b)); (c) The map ϕt for t ∈ (tn−1, tn] is constructed as
the identity everywhere except over the elements with one edge over the moving boundary.
Over these elements ϕt is defined as an extension of the closest point projection of ∂Ωtn−1

to ∂Ωt. Fig. 4(c) shows the mesh over Ωtn obtained as ϕt
n
(Ωtn−1

). These three steps are
repeated over (tn, tn+1], as shown in Figs. 4(d), 4(e), and 4(f).

Discretization and time integration. As highlighted earlier, the introduction of the map ϕt

enables the construction of approximations of any order within each interval (tn−1, tn], and
we elaborate on this next.

We denote the solution over (tn−1, tn] with Un−1(X, t), which takes values over Ωtn−1

at each time instant in this interval. To obtain appropriate spatial accuracy, notice that
a finite element space of any order over Ωtn−1

(Fig. 4(b)) can be defined in a standard
way, by composing finite element functions over Snh with the universal mesh map. The
spatially discretized equations for Un−1 over this space form an ordinary system of differential
equations whose unknowns are the degrees of freedom for Un−1, and hence any standard,
off-the-self integrator of any order can be adopted to approximate its solution.

The crucial role played by the universal mesh map is in full display here, since for smooth
domains it provides an exact triangulation of Ωtn−1

. By ensuring that the mesh conforms
exactly to the moving domain at all times, the method is free of geometric errors – errors that
result from discrepancies between the exact domain and the computational approximation
to the domain.

Projection. To continue the time integration from the interval (tn−1, tn] to the interval
(tn, tn+1], an initial condition at tn is needed, based on the solution computed in (tn−1, tn].

This initial condition is Un(x, tn+) = limt↘tn U
n(x, t) = Un−1(

[
ϕt

n]−1
(x), t), which is defined

over Ωtn . In general, however, Un(x, tn+) does not belong to the discrete approximation space
over Ωtn , so we project Un(x, tn+) onto it through a suitably defined projection operator;
ideally an L2-projection, but numerical experiments with interpolation have rendered very
good results as well.

The introduction of this projection N times would generally have the detrimental effect
of reducing the order of convergence by one if the spacing τ between temporal nodes tn is

7

proportional to the time step ∆t adopted during integration over each interval (tn−1, tn].
Nevertheless, one of the highlights of the map ϕt we construct is that it differs from the
identity in a region of thickness O(h) from the domain boundary, where h ∼ ∆t is the
spatial mesh size. This feature makes the net reduction of the convergence rate due to the
projection to be only of half an order (in the L2 norm).

The implementation of this idea with finite element spaces is facilitated by regarding
this method as a way to construct approximation spaces that evolve with the domain. This
reduces the effect of the map ϕt to defining a “curved” mesh over Ωt. By further interpolating
the map ϕt with the finite element space, an isoparametric approximation of the domain is
obtained. In this way, standard finite element procedures can be adopted to compute all
needed quantities over either the exact or the isoparametric approximation of Ωt. This
curved mesh is constructed at each stage of the time-integration scheme.

Comparison with conventional ALE schemes. In light of the preceding paragraph, the reader
may recognize that our method resembles a conventional ALE scheme with a peculiar mesh
motion strategy and regular, systematic “remeshing.” In particular, the mesh motion defined
by ϕt leaves all elements stationary except those with an edge on the moving boundary, and
the “remeshing” entails the selection of a subtriangulation of a fixed background mesh and
perturbing a few of its elements.

The peculiarity of the approach endows it with several unique features. Since the mesh
motion is restricted to boundary elements, the lengths of the time intervals (tn−1, tn] between
“remeshing” (and hence the time step ∆t adopted during time integration over those inter-
vals) are restricted by the mesh spacing; see Section 5.5 for details. An advantage of this
strategy is that it easily handles large domain deformations, and the nodal motions are in-
dependent and explicitly defined. However, for the reasons described earlier, the theoretical
convergence rate of the method is suboptimal by half an order in the L2 norm.

Remarks. Back to the difficulties highlighted at the beginning of this section, it should be
evident by now that the basic idea we just outlined provides approximations of the domain
of the proper order at all times, and that at no point does the difficulty of dealing with nodes
that belong to Ωt for only a fraction of the interval (tn−1, tn] arise. The set of degrees of
freedom in the approximation space does generally change because of the periodic redefinition
of the reference configuration, a seemingly inevitable step for large enough deformations of
the domain, but the introduction of the projection enables the continuation of the high-order
integration in time with a minimal accuracy loss. We should also mention that a common
difficulty for fixed-mesh methods, which is the imposition of Dirichlet or Neumann boundary
conditions, is handled in a standard way with the approach in this manuscript.

In the following, we construct the method in one spatial dimension, to present some of
the main ideas in a rigorous way, yet sidestepping the notational and algorithmic difficulties
introduced by domain boundaries that are defined by curves instead of isolated points.

8

s(tn−1)

s(tn−1)

s(tn−1)−Rh

s(tn−1)−Rh

s(tn−1)−Rh s(t)

. . .

. . .

. . .

. . .

. . .

. . .

Figure 5: Illustration of the manner in which a one-dimensional universal mesh adapts to the immersed
domain (0, s(t)) for t ∈ (tn−1, tn]. At t = tn−1

+ , the background mesh (top) is deformed by snapping the
node that is closest to s(tn−1) (among nodes outside the immersed domain) onto s(tn−1) (middle). In the
process, the nodes between s(tn−1) − Rh and s(tn−1) are relaxed away from the boundary. At later times
t ∈ (tn−1, tn] (bottom), the snapped node tracks the position of the boundary, while all other nodes remain
in the positions they adopted at t = tn−1

+ . Here, we used the map (2) with R = 3 and δ = 0.3.

2.1. Construction of the method in one spatial dimension

Consider the moving boundary problem: Given a spacetime domain Ω = {(x, t) ∈ R2 |
0 < x < s(t), 0 < t < T}, find u : Ω→ R such that

0 =
∂u

∂t
− ∂2u

∂x2
, (x, t) ∈ Ω (1a)

0 =u(0, t) = u(s(t), t), 0 < t < T (1b)

u0(x) =u(x, t), 0 < x < s(0) (1c)

where s : [0, T] → (0, 1) is a smooth, prescribed function of time, and u0 : (0, s(0)) → R is
the initial condition.

For such a problem, it suffices to adopt a grid 0 = X0 < X1 < · · · < XM = 1 of the
unit interval as the universal mesh – a stationary background mesh that covers the domains
(0, s(t)) for all times 0 ≤ t ≤ T . We shall also employ a partition 0 = t0 < t1 < . . . < tN = T
of the time axis that is fine enough so that the change in s(t) over a given interval (tn−1, tn]
never exceeds the minimum mesh spacing. That is,

max
t∈(tn−1,tn]

|s(t)− s(tn−1)| < min
0<i≤M

(Xi −Xi−1).

The universal mesh can be adapted to conform exactly to the domain (0, s(t)) at any time
t by perturbing nodes in a small neighborhood of s(t). A simple prescription for t ∈ (tn−1, tn]
is, for each i,

xi(t) =


Xi − δh

(
1− s(tn−1)−Xi

Rh

)
if s(tn−1)−Rh ≤ Xi < s(tn−1)

s(t) if Xi−1 < s(tn−1) ≤ Xi

Xi otherwise

(2)

9

where R is a small positive integer, δ is a small positive number, and h = max0<i≤M(Xi −
Xi−1). See Fig. 5 for an illustration. In this case, ϕt(X) =

∑M
i=0 xi(t)Mi(X), where Mi is

the standard P1 finite element shape function for node i: it is affine over each element and
satisfies Mi(Xj) = δij.

On this adapted mesh we may construct shape functions na(x, t) = Na((ϕ
t)−1(x)), where

Na(X) are the shape functions over the universal mesh. The shape functions na are (for
instance) piecewise polynomial in x on each interval [xi−1(t), xi(t)] for any fixed t, and are
continuous in t ∈ (tn−1, tn) for each fixed x. For each t ∈ (tn−1, tn), the shape functions na
satisfy that

∂na
∂t

(x, t) = −∂na
∂x

(x, t)vh(x, t), (3)

where vh(ϕ
t(X), t) = ∂

∂t
ϕt(X) is the (spatial/Eulerian) velocity of the adapted mesh. For

xi−1(t) < x < xi(t),

vh(x, t) = ẋi(t)

(
x− xi−1(t)

xi(t)− xi−1(t)

)
+ ẋi−1(t)

(
xi(t)− x

xi(t)− xi−1(t)

)
.

We then seek an approximate solution

uh(x, t) =
A∑
a=1

ua(t)na(x, t)

lying in the space of functions

Vh(t) = span{na(·, t) : na(x, t) = 0∀x > s(t)}.

Here, u(t) = (u1(t),u2(t), . . . ,uA(t))T ∈ RA is a vector of time-dependent coefficients, which
we allow to be discontinuous across the temporal nodes tn. We denote

u(tn+) = lim
t↘tn

u(t)

and similarly for other scalar- or vector-valued functions. To obtain an equation for uh, we
perform a standard Galerkin projection of (1a) onto the space of functions Vh(t), which leads
to the following ordinary differential equation for u at each t ∈ (tn−1, tn],

M(t)u̇(t)−B(t)u(t) + K(t)u(t) = 0. (4)

Here M(t) ∈ RA×A is a mass matrix, K(t) ∈ RA×A is a stiffness matrix, and B(t) ∈ RA×A

is an advection matrix, constructed according to the following prescription. For a such that

10

na(·, t) ∈ Vh(t),

Mab(t) =

∫ 1

0

nb(x, t)na(x, t) dx

Bab(t) =

∫ 1

0

vh(x, t)
∂nb
∂x

(x, t)na(x, t) dx

Kab(t) =

∫ 1

0

∂nb
∂x

(x, t)
∂na
∂x

(x, t) dx,

while for a such that na(·, t) /∈ Vh(t),

Mab(t) = 0

Bab(t) = 0

Kab(t) = δab.

These last values are set so that uh(x, t) = 0 for x > s(t), which follows from imposing (1b).
The algorithm then proceeds as follows:

Algorithm 2.1 Time integration for a universal mesh in one dimension.

Require: Initial condition u(x, 0) = u0(x).
1: for n = 1, 2, . . . , N do
2: Project the current numerical solution

uh(x, t
n−1) =

A∑
a=1

ua(t
n−1)na(x, t

n−1)

(or the initial condition u(x, 0) if n = 1) onto Vh(tn−1
+) to obtain the vector of

coefficients u(tn−1
+) in the expansion

uh(x, t
n−1
+) =

A∑
a=1

ua(t
n−1
+)na(x, t

n−1
+).

3: Numerically integrate

M(t)u̇(t)−B(t)u(t) + K(t)u(t) = 0

for t ∈ (tn−1, tn] with the initial condition u(tn−1
+) and the constraints induced by

(1b) to obtain u(tn).
4: end for
5: return uh(x, t

N)

Several salient features of the method should be evident at this point:

• The connectivity of the universal mesh never changes during deformation – only the
nodal positions change. As a consequence, the sizes and sparsity structures of various

11

Figure 6: Spacetime domain Ω.

discrete quantities (the solution vector u, the mass matrix M, the stiffness matrix
K, and the advection matrix B) can be held fixed, even though differing subsets of
degrees of freedom may participate in the discrete equations at any interval (tn−1, tn].
One merely needs to impose “homogeneous Dirichlet boundary conditions” on the
solution at nonparticipating degrees of freedom.

• Large deformations of the domain pose no threat to the quality of the deformed mesh,
provided max1≤n≤N(tn − tn−1) is sufficiently small and the domain evolution is suffi-
ciently regular.

• In two dimensions, the nodal motions are independent and explicitly defined, rendering
the mesh motion strategy low-cost and easily parallelizable. See Section 5 for details.

3. A Model Moving Boundary Problem

3.1. The Continuous Problem

Consider a moving boundary problem on a bounded spacetime domain Ω ⊂ R2 × [0, T],
as in Fig. 6. For each t ∈ [0, T], denote by Ωt ⊂ R2 the spatial component of the spacetime
slice Ω∩ (R2×{t}), and denote by Γt the boundary of Ωt. Finally, let Γ =

⋃
0<t<T (Γt×{t})

denote the lateral boundary of the spacetime domain Ω. We assume that Ωt is open in
R2 for each t. As a regularity requirement, we assume that for every t ∈ [0, T], the set Γt

can be expressed as the image of an embedding c(·, t) of the unit circle S1 into R2, where
c ∈ C2(S1 × (0, T),R2).

Now consider the following abstract moving boundary problem: Given f : Ω → R and
u0 : Ω0 → R, find u : Ω→ R satisfying

∂u

∂t
+ a(u) = f in Ω (5a)

u = 0 on Γ (5b)

u = u0 on Ω0, (5c)

12

where a is a partial differential operator of the form

a(u) = −∇x · (k1∇xu) + k2 · ∇xu+ k3u

with coefficients k1(x, t) ∈ R2×2, k2(x, t) ∈ R2, and k3(x, t) ∈ R for every (x, t) ∈ Ω.
We assume that k1 is uniformly positive definite. That is, there exists C > 0 such that
v · k1(x, t)v ≥ Cv · v for every v ∈ R2 and every (x, t) ∈ Ω.

It is known [57, Theorem 7.17] that if k1 ∈ L∞(Ω)2×2, k2 ∈ L∞(Ω)2, k3 ∈ L∞(Ω), the
components of k1 are Lipschitz in spacetime, f ∈ Lp(Ω), and u0 ∈ W 2,p(Ω0) with 1 < p <∞,
then the problem (5) has a unique solution u with u(·, t) ∈ W 2,p(Ωt) and ∂u

∂t
(·, t) ∈ Lp(Ωt)

for every 0 ≤ t ≤ T . Here, W s,p denotes the Sobolev space of differentiability s ≥ 0
and integrability 1 ≤ p ≤ ∞, and Lp = W 0,p denotes the Lebesgue space of integrability
1 ≤ p ≤ ∞. Later, we shall also denote Hs = W s,2, and we write H1

0 (Ωt) for the space of
functions in H1(Ωt) with vanishing trace. We denote the norm on W s,p(Ωt) by ‖ · ‖s,p,Ωt and
the associated semi-norm by | · |s,p,Ωt .

3.2. Equivalent Formulation of the Continuous Problem

In the following, we derive an equivalent formulation of the moving-boundary problem (5)
that is well-suited for numerical discretization. For reasons that will soon be made clearer,
we restrict our attention to a temporal subinterval (tn−1, tn] ⊂ [0, T] for the remainder of
this section.

Weak formulation. A weak formulation of (5) reads: Find u(·, t) ∈ V(Ωt) := H1
0 (Ωt) such

that
mt(u̇, w) + at(u,w) = mt(f, w) ∀w ∈ V(Ωt) (6)

for every t ∈ (tn−1, tn], where the time-dependent bilinear forms mt and at are given by

mt(u,w) =

∫
Ωt
uw dx

at(u,w) =

∫
Ωt
∇xw · k1∇xu+ (k2 · ∇xu)w + k3uw dx.

Here and throughout this paper, the dot notation denotes differentiation with respect to
time while holding the remaining arguments to the function fixed.

Pulling back to a cylindrical domain. Given any sufficiently smooth family of bijections
{ϕn,t : Ωtn−1 → Ωt | t ∈ (tn−1, tn]}, equation (6) may be recast on the cylindrical spacetime
domain Ωtn−1 × (tn−1, tn], since, by a change of variables, (6) is equivalent to the statement

M t(U̇ ,W)−Bt(U,W) + At(U,W) = M t(F,W) ∀W ∈ (ϕn,t)∗V(Ωt) (7)

for every t ∈ (tn−1, tn], where

(ϕn,t)∗V(Ωt) =
{
W : Ωtn−1 → R | W = w ◦ ϕn,t for some w ∈ V(Ωt)

}

13

is the space of functions in V(Ωt) pulled back to Ωtn−1
by ϕn,t,

U̇(X, t) =
∂

∂t

∣∣∣∣
X

U(X, t),

and

M t(U,W) =

∫
Ωtn−1

UW |∇Xϕ
n,t| dX

Bt(U,W) =

∫
Ωtn−1

(
(∇Xϕ

n,t)−†∇XU · V n,t
)
W |∇Xϕ

n,t|dX

At(U,W) =

∫
Ωtn−1

[(
(∇Xϕ

n,t)−†∇XW
)
·K1

(
(∇Xϕ

n,t)−†∇XU
)

+
(
(∇Xϕ

n,t)−†∇XU ·K2

)
W +K3UW

]
|∇Xϕ

n,t| dX,

with |∇Xϕ
n,t| denoting the absolute value of the Jacobian determinant of ϕn,t and (∇Xϕ

n,t)−†

denoting the inverse adjoint of ∇Xϕ
n,t. Here, Ki = ki ◦ ϕn,t, i = 1, 2, 3 and F = f ◦ ϕn,t are

the Lagrangian counterparts of k1, k2, k3, and f , and

V n,t(X) := ϕ̇n,t(X) =
∂

∂t

∣∣∣∣
X

ϕn,t(X)

is the material or Lagrangian velocity.
The validity of the preceding change of variables will hold if, for instance,

t 7→ ϕn,t ∈ C1
(

(tn−1, tn],W 1,∞(Ωtn−1

)2
)
, (8)

and (ϕn,t)−1 ∈ W 1,∞(Ωt)2 for t ∈ (tn−1, tn]. Note that under these assumptions, (ϕn,t)∗V(Ωt) =
V(Ωtn−1

) = H1
0 (Ωtn−1

).
The presence of the term Bt(U,W) in (7) arises from the identity

∂U

∂t
(X, t) =

∂u

∂t
(ϕn,t(X), t) +∇xu(ϕn,t(X), t) · vn,t(ϕn,t(X)), (9)

which relates the partial time derivative of u to the material time derivative

Du

Dt
(ϕn,t(X), t) :=

∂U

∂t
(X, t)

of u via a term involving the spatial or Eulerian velocity

vn,t
(
ϕn,t(X)

)
= V n,t(X).

Upon discretization, the term Bt(U,W) corresponds precisely to the term B(t)u(t) that the
reader encountered earlier in (4).

14

“Hybrid” Eulerian formulation. A third equivalent statement of (6) and (7) is obtained by
acknowledging that, by (9),

∂u

∂t
(x, t) =

Du

Dt
(x, t)−∇xu(x, t) · vn,t(x). (10)

It then follows that (6) is equivalent to

mt

(
Du

Dt
, w

)
− bt(u,w) + at(u,w) = mt(f, w) ∀w ∈ V(Ωt) (11)

for every t ∈ (tn−1, tn], where the time-dependent bilinear form bt is given by

bt(u,w) =

∫
Ωt
∇xu · vn,t w dx. (12)

So, u satisfies (6) if and only if it satisfies (11) and if and only if U satisfies (7). The advantage
of this formulation is that it involves simpler expressions for the bilinear forms than those
in (7), and these simpler expressions will be convenient for the numerical implementation
later. Notice as well that the material time derivative on ∂Ωt is now a directional derivative
in a direction tangential to the spacetime boundary ∂Ω, in contrast to u̇, which can only be
defined as a one-side derivative therein.

4. Discretization

4.1. Spatial Discretization on Short Time Intervals

At this point it is instructive to derive, in a systematic manner, the general form of
a finite element spatial discretization of (5) obtained via Galerkin projection. We begin
by spatially discretizing the weak formulation (6) and proceed by pulling the semidiscrete
equations back to a cylindrical spacetime domain, and by obtaining the “hybrid” Eulerian
formulation of the same semidiscrete equations. The utility of these three formulations will
be evident towards the end of this section.

Galerkin formulation. A Galerkin projection of (6) requires choosing a finite-dimensional
subspace Vh(Ωt) ⊂ V(Ωt) at each time t and finding uh(t) ∈ Vh(Ωt) such that

mt(u̇h, wh) + at(uh, wh) = mt(f, wh) ∀wh ∈ Vh(Ωt) (13)

for every t ∈ (tn−1, tn]. For concreteness, let us construct such a family of finite element spaces
by fixing a reference triangulation Snh of a polygonal domain D(Snh) ⊂ R2 and constructing
a family of continuous, bijective maps

Φn,t
h : D(Snh)→ Ωt

that are differentiable in time and are affine on each triangle K ∈ Snh , except perhaps near
the boundary, see Fig. 7. In informal language, the image of Φn,t

h provides a moving mesh

15

Ωtn−1

Ωt

Φ
n,tn−1

+

h Φn,t
h

ϕn,t

D(Sn
h)

nt
a ∈ Vh(Ω

t)Na ∈ Vn
h

Ña

Figure 7: For each t ∈ (tn−1, tn], the map Φn,t
h provides a bijection from a fixed reference triangulation Snh

of a polygonal domain D(Snh) to the moving domain Ωt. Depicted pictorially is a shape function Ña on the

reference triangulation and its pushforward to Ωtn−1

and Ωt, denoted Na and nta, respectively.

that triangulates Ωt for each t ∈ (tn−1, tn]. Then, with {Ña}a denoting shape functions on
the reference triangulation, we may set

Vh(Ωt) = span{nta}a (14)

with
nta = Ña ◦ (Φn,t

h)−1

for each t ∈ (tn−1, tn].

Pulling back to a cylindrical domain. We may pull back the semidiscrete equations (13) to
the cylindrical spacetime domain Ωtn−1 × (tn−1, tn] with the aid of the bijections

ϕn,t := Φn,t
h ◦ (Φ

n,tn−1
+

h)−1. (15)

The resulting equivalent semidiscrete equation reads

M t(U̇h,Wh)−Bt(Uh,Wh) + At(Uh,Wh) = M t(F,Wh) ∀Wh ∈ (ϕn,t)∗Vh(Ωt) (16)

for every t ∈ (tn−1, tn].

“Hybrid” Eulerian formulation. Similarly, the discrete “hybrid” Eulerian formulation follows
by taking advantage of (9) to replace u̇h in (13), to get

mt

(
Duh
Dt

,wh

)
− bt(uh, wh) + at(uh, wh) = mt(f, wh) ∀wh ∈ Vh(Ωt) (17)

for every t ∈ (tn−1, tn].

16

Remark. We note that (13), (16), and (17) do not define three different methods; they are
three ways of writing precisely the same one. That is, uh satisfies (13) if and only if it
satisfies (17) and if and only if Uh(t) = (ϕn,t)∗uh(t) satisfies (16).

Finite element spaces. Notice that (16) is a discretization of (7) with a particular choice of
a finite element subspace of V(Ωtn−1

), namely (ϕn,t)∗Vh(Ωt). The shape functions for this
space are given by

Na = nta ◦ ϕn,t

= Ña ◦ (Φ
n,tn−1

+

h)−1,

which are time-independent.
As a consequence, the material time derivative of functions in Vh(Ωt) takes a particularly

simple form. Let

uh(ϕ
n,t(X), t) =

∑
a

ua(t)n
t
a(ϕ

n,t(X)) =
∑
a

ua(t)N
t
a(X) = Uh(X, t).

Then
Duh
Dt

(ϕn,t(X), t) =
∂Uh
∂t

(X, t) =
∑
a

u̇a(t)N
t
a(X) =

∑
a

u̇a(t)n
t
a(ϕ

n,t(X)), (18)

since the shape functions {Na}a do not depend on time.
Since the map (15) depends upon h, we make that dependence explicit by appending a

subscript h to ϕn,t and all derived quantities (vn,t, V n,t, M t, At, and Bt) in the remainder
of this text.

Summary. In summary, we have shown that if the semidiscrete equation (13) is pulled back
to the reference domain Ωtn−1

through the use of a map

ϕn,th = Φn,t
h ◦ (Φ

n,tn−1
+

h)−1,

then the resulting semidiscrete equation (16) involves a finite element space that does not
change with time. We may label that space Vnh and write

M t
h(U̇h,Wh)−Bt

h(Uh,Wh) + Ath(Uh,Wh) = M t
h(F,Wh) ∀Wh ∈ Vnh (19)

for every t ∈ (tn−1, tn]. The shape functions for Vnh are simply shape functions on the
reference triangulation Snh pushed forward to Ωtn−1

:

Na = Ña ◦ (Φ
n,tn−1

+

h)−1.

The utility of the above formulation is transparent. Upon expanding Uh as a linear com-
bination of shape functions, the system (19) is a system of ordinary differential equations for
the coefficients of the expansion. This is also evident from the “hybrid” Eulerian formulation
(17) upon replacing the material time derivative by (18). To this system of ODEs we may
apply a time integrator of choice to advance from time tn−1 to time tn.

17

4.2. Integration over Long Time Intervals

In the preceding sections, we elected to restrict our attention to a temporal subinterval
(tn−1, tn] ⊂ [0, T] and construct finite element subspaces of V(Ωt), t ∈ (tn−1, tn], using a
smoothly varying triangulation of Ωt given by the image of Φn,t

h , t ∈ (tn−1, tn]. This decision
allows for the use of different reference triangulations Snh on different temporal subintervals,
simplifying the task of maintaining a nondegenerate triangulation of a domain undergoing
large deformations.

To complete the picture and construct an algorithm for integration over the interval
[0, T] of interest, we choose a partition 0 = t0 < t1 < · · · < tN = T and make use of one last
ingredient: a linear projector pnh onto Vnh for each n. For the definition of the algorithm, we
require that the domain of definition of pnh contains at least the space Unh given by

Unh =

{
V(Ω0) if n = 1

(ϕn−1,tn−1

h)∗Vn−1
h + Vnh if 1 < n ≤ N,

where
(ϕn−1,tn−1

h)∗Vn−1
h =

{
w : Ωtn−1 → R | w ◦ ϕn−1,tn−1

h ∈ Vn−1
h

}
is the space of functions in Vn−1

h pushed forward to Ωtn−1
by ϕn−1,tn−1

h . We assume the
projector is surjective for each n; equivalently, pnh

∣∣
Vnh

= identity for each n.

Some examples of projectors are the orthogonal projector pnh,L2 onto Vnh with respect

to the L2-inner product, the orthogonal projector pnh,H1 onto Vnh with respect to the H1-
inner product, and the nodal interpolant inh onto Vnh ; see [58, Chapter 1] for details. The
appropriate projector depends on the problem being approximated and the choice of temporal
nodes tn, triangulations Snh , and maps Φn,t

h . As we shall mention, pnh,L2 is the projector best
suited for use with the choices detailed in Section 5.

With such a family of projectors at hand, a method for integration over the full time
interval [0, T] is then summarized in Algorithm 4.1.

Relationship to ALE. Let us emphasize that Algorithm 4.1 has been formulated with enough
generality that it encompasses not only the method specific to this paper involving universal
meshes (which is detailed in Section 5) but also conventional ALE schemes. In the case
of an ALE scheme, the reference triangulation Snh is a triangulation of Ωtn−1

, the map ϕn,th
corresponds to a mesh motion derived from, e.g., solutions to the equations of linear elasticity,
and the temporal nodes tn correspond to times at which remeshing is performed. In the case
of the method specific to this paper, we shall see in Section 5 that the reference triangulation
Snh is a subtriangulation of a fixed background mesh, the map ϕn,th induces deformations of
triangles on the boundary of Snh while leaving the remaining triangles fixed, and the temporal
nodes tn are spaced closely enough so that these deformations of boundary triangles remain
well-behaved.

4.3. Example: a Runge-Kutta Time-Integrator

We next exemplify how a time integrator of any given order can be incorporated into step
5 of the algorithm. In this case we consider an s-stage Singly Diagonally Implicit Runge-
Kutta (SDIRK) method of order ≤ s as the time integrator [59, 60]. Such an integrator

18

Algorithm 4.1 General form of a time integrator for moving-boundary problems with a
finite element discretization in space.

Require: Initial condition u0 ∈ V(Ω0).
1: for n = 1, 2, . . . , N do

2: Choose a reference triangulation Snh and a family of maps Φn,t
h : D(Snh)→ Ωt, t ∈

(tn−1, tn].

3: Generate a finite-dimensional subspace Vnh of the continuous solution space V(Ωtn−1
)

using shape functions on Snh composed with (Φ
n,tn−1

+

h)−1.

4: Project the current numerical solution (or the initial condition if n = 1) onto Vnh by
setting

Uh(·, tn−1
+) = pnhuh(·, tn−1),

where uh(·, t0) = u0 or, for n > 1,

uh(x, t
n−1) = Uh((ϕ

n−1,tn−1

h)−1(x), tn−1)

is the pushforward of Uh(·, tn−1) ∈ Vn−1
h ⊂ V(Ωtn−2

) to Ωtn−1
.

5: Numerically integrate (19) over (tn−1, tn] with the projected initial condition Uh(·, tn−1
+).

6: end for
7: return uh(·, tN)

requires solving a sequence of s systems of equations

M ti
h (Ui,W) = M ti

h

(
i−1∑
j=0

βijUj,W

)
+ γ∆tGti

h (Ui, F (ti);W) ∀W ∈ Vnh (20)

for Ui ∈ Vnh , i = 1, 2, . . . , s, where U0 = Uh(·, t0), t0 ∈ (tn−1, tn], ti =
∑i−1

j=0 βijtj + γ∆t for
0 < i ≤ s, and

Gt
h(U, F ;W) = M t

h(F,W)− Ath(U,W) +Bt
h(U,W).

The time-∆t advancement of U0 is then given by Us. The coefficients γ > 0 and βij ∈ R,
i = 1, 2, . . . , s, j = 0, 1, . . . , i − 1, for various SDIRK methods are tabulated in Appendix
A, Tables A.3-A.5. Pragmatically, implementing an SDIRK method amounts to comput-
ing s “backward-Euler” steps, with the initial condition at the ith stage given by a linear
combination of the solutions at the previous stages.

4.4. Overview of Error Estimates

In our companion paper [6], we derive error estimates in the L2-norm for the aforemen-
tioned method for the problem in §3.1. Here, we give an overview of the estimates for the
case in which the finite element spaces Vnh consist of continuous functions made of element-
wise polynomials of degree r − 1, where r > 1 is an integer. We begin by introducing some
notation.

19

Notation. Let un ∈ V(Ωtn) denote the value of the exact solution u at t = tn, i.e. un =
u(·, tn), and let u∆t,n

h ∈ Vh(Ωtn) denote the value of the fully discrete solution at t = tn.
Finally, let vh : Ω→ R2 denote the vector field on the spacetime domain Ω whose restriction
to each temporal slice is vn,th , i.e. vh(·, t) = vn,th for t ∈ (tn−1, tn].

From this point forward, the parameter h denotes the maximum diameter of a triangle
belonging to {K ∈ Snh | 1 ≤ n ≤ N}. Additionally, let ∆t be the maximum time step adopted
while time-integrating over the interval [0, T], namely, the maximum time step employed by
the time-integrator in Line 5 of Algorithm 4.1 among all intervals (tn−1, tn]. We remind
the reader that the temporal nodes tn demarcate changes in the reference triangulation Snh ;
hence, the time step adopted during integration over (tn−1, tn] is less than or equal to tn−tn−1

for every n. We assume that the time integrator employed during these intervals is stable
and has a global truncation error of order q ≥ 1 in the time step ∆t.

In Line 4 of of Algorithm 4.1, the numerical solution is transferred, via a projection
pnh, between two finite element spaces associated with differing triangulations of Ωtn−1

. We
denote by Rn

h ⊆ Ωtn−1
the region over which the two triangulations differ, and by |Rn

h| its
(Lebesgue) measure. We assume the projector is stable in the sense that there exists a
constant Cp independent of h and n such that

‖pnhU‖0,2,Ωtn−1 ≤ Cp‖U‖0,2,Ωtn−1

for all U ∈ Unh .

General error estimate. It is proven in [6] that if the assumptions above are satisfied, the
triangulations Snh are quasi-uniform, and the exact solution u and the maps Φn,t

h are suffi-
ciently regular, then an error estimate of the following form holds with constants C1(u, vh, T),
C2(u, vh, T) and C3(u, T):

‖u∆t,N
h − uN‖0,2,ΩT ≤ CN

p

(
C1(u, vh, T)hr + C2(u, vh, T)∆tq + C3(u, T)hr`h,r

N∑
n=1

|Rn
h|1/2

)
(21)

where

`h,r =

{
log(h−1) if r = 2

1 if r > 2
(22)

and C1(u, vh, T), C2(u, vh, T) ≥ C(u, T) for some constant C(u, T) > 0.
The content of this estimate is easily understood. The error committed by the method

consists of three terms, amplified by the N th power of the projector’s stability constant: an
error due to spatial discretization of order at best hr (first term), an error due to temporal
discretization of order at best ∆tq (second term), and an error introduced by projecting
between differing triangulations of the same domain Ωtn at each temporal node tn (third
term). The coefficients of the first two terms depend implicitly on h through the choice of
the domain velocity vh. The precise scaling of these coefficients with respect to h depends
upon the chosen mesh motion strategy and is, of course, no better than O(1) in h. We
particularize this estimate for the mesh motion strategy proposed here in §5.5.

20

Discussion. Error estimates that are specific to two categories of methods are immediately
apparent from the general estimate (21). The first category consists of classical ALE schemes
with occasional remeshing – that is, N is independent of h and ∆t. For methods of this
type, the amplifier CN

p is of order unity (regardless of the choice of the projector), the
summation of the mesh discrepancy volumes is of order unity, and the coefficients C1(u, vh, T)
and C2(u, vh, T) can be bounded independently of h for sufficiently regular mesh motion
strategies. The resulting error estimate reads

‖u∆t,N
h − uN‖0,2,ΩT ≤ C(u, T)(hr + ∆tq + `h,rh

r)

for a constant C(u, T) (it is straightforward to sharpen this estimate to ‖u∆t,N
h −uN‖0,2,ΩT ≤

C(u, T)(hr + ∆tq)).
At the other extreme are methods for which the reference triangulation Snh is updated

more frequently, e.g., at intervals proportional to ∆t. This strategy is, in fact, the one
adopted in the method proposed in Section 5. For methods of this type, the proportionality
between N and ∆t−1 mandates the use of a projector with stability constant Cp = 1 (such
as the L2-projector pnh,L2). However, the short time intervals between updates of the ref-
erence triangulation allow for the use of simple mesh motion strategies in which the nodal
motions are independent, explicitly defined, and restricted to only nodes that lie on the
moving boundary. The resulting mesh discrepancy volumes |Rn

h| are of order h, and the
coefficients C1(u, vh, T) and C2(u, vh, T) can be shown to be of order `h,rh

−1/2 and of order
unity, respectively, for suitable nodal motions. The ultimate error estimate reads

‖u∆t,N
h − uN‖0,2,ΩT ≤ C(u, T)(`h,rh

r−1/2 + ∆tq + `h,rh
r+1/2∆t−1) (23)

for a constant C(u, T), which is suboptimal by half an order when ∆t ∼ h. Note that in
practice, we have observed in numerical experiments that the use of a projector with stability
constant Cp > 1 (such as the interpolation operator inh) does not lead to a degradation of
convergence beyond the existing half-order suboptimality, despite the theory’s predictions.

5. Universal Meshes

The algorithm presented in the preceding section requires at each temporal node tn−1 the
selection of a family of maps Φn,t

h : D(Snh)→ Ωt, t ∈ (tn−1, tn], from a fixed polygonal domain
D(Snh) to the moving domain Ωt. Here we present a means of constructing such maps using a
single, universal mesh that triangulates an ambient domain D ⊂ R2 containing the domains
{Ωt}Tt=0 for all times t ∈ [0, T]. Full details of the method are described in [5].

The essence of the method is to triangulate D with a fixed mesh Th and to identify, for
each time interval (tn−1, tn], a submesh Snh of Th that approximates Ωtn−1

. Triangles on the
boundary of Snh are then deformed in such a way that the submesh conforms exactly to the
moving domain Ωt for all t ∈ (tn−1, tn].

The conditions under which a given triangulation Th can be so adapted to conform to a
family of domains Ωt, t ∈ [0, T], are laid forth in [61, 5]. Briefly, the procedure is guaranteed
to succeed if:

(i) Ωt is C2-regular for every t.

21

(ii) Th is sufficiently refined in a neighborhood of ∂Ωt for every t.

(iii) All triangles in Th have angles bounded above by a constant ϑ < π/2.

The level of refinement requested by condition (ii) is dictated primarily by the minimum
radius of curvature of ∂Ωt among all times t ∈ [0, T], which, roughly speaking, must be no
less than a small multiple of the maximum element diameter. This notion is made precise
in [61]. Note that condition (i) precludes an application of the method in its present form
to domains with corners.

5.1. Construction of an Exactly Conforming Mesh

In detail, consider a triangulation Th of D satisfying conditions (i-iii), with the parameter
h denoting the length of the longest edge in the triangulation. For a given domain Ωt ⊂ D,
t ∈ [0, T], let φt : D → R denote the signed distance function to ∂Ωt, taken to be positive
outside Ωt and negative inside Ωt. Let πt : D → ∂Ωt denote the closest point projection onto
∂Ωt. For i = 0, 1, 2, 3, let T th,i denote the collection of triangles K ∈ Th for which exactly i
vertices of K do not lie in the interior of Ωt.

For a given subtriangulation Sh of Th, we make the distinction between Sh, the list of
vertices in the subtriangulation and their connectivities, and D(Sh), the polygonal domain
occupied by triangles in Sh. We write K ∈ Sh to refer to triangles K ⊆ D(Sh) who have
vertices in Sh.

To construct a conforming mesh for Ωt from the mesh Th, we choose

Snh = T tn−1

h,0 ∪ T tn−1

h,1 ∪ T tn−1

h,2

as the reference subtriangulation for the domains Ωt, t ∈ (tn−1, tn]. This subtriangulation is
simply the set of triangles in Th with at least one vertex in Ωtn−1

. The map Φn,t
h : D(Snh)→ Ωt

will then make use of three important mappings, described in the following paragraphs, and

illustrated in Fig. 8. The universal mesh map, as described in [5], is Φn,tn−1

h .

Boundary evolution map. The first is a boundary evolution map γn,th : ∂D(Snh)→ ∂Ωt, which
provides a correspondence between the piecewise linear boundary of D(Snh) and the boundary
of Ωt for t ∈ (tn−1, tn], as in Fig. 8. The choice of γn,th is not unique, although a simple choice
is the closest point projection onto Ωt composed with the closest point projection onto Ωtn−1

:

γn,th = πt ◦ πtn−1∣∣
∂D(Snh)

. (24)

By the regularity of the spacetime domain Ω, this map is well-defined for h sufficiently small
and t sufficiently close to tn−1; see [61].

Relaxation map. The second is a relaxation map pn,th that perturbs vertices lying both inside
Ωt and near ∂Ωt in a direction away from ∂Ωt. A simple choice of relaxation is the map

pn,th (x) =

x− δh
(

1 + φt
n−1

(x)
Rh

)
∇φtn−1

(x) if −Rh < φt
n−1

(x) < 0

x otherwise,
(25)

22

ψn,t
h

pn,th (w)pn,th (w)

Figure 8: The action of Φn,t
h on a triangle K ∈ T tn−1

h,2 comprises two steps: A relaxation step that moves w

away from the boundary, and a nonlinear blend map ψn,t
h that maps the straight triangle to a curved one.

which moves vertices within a distance Rh of ∂Ωtn−1
by an amount ≤ δh in a direction

normal to the boundary, with R > 1 a small positive integer and (1 + 1/R)−1 ≤ δ ≤ 1.
It is proven in [5] that for a straight boundary (or one of small enough radius of curvature
compared with the mesh size) such a map results in elements of bounded quality at t = tn−1

when conditions (i-iii) hold.
Note that this choice of relaxation leaves relaxed vertices fixed over the duration of

the interval (tn−1, tn]. We denote by pn,th (Th) the triangulation obtained by applying the
relaxation pn,th to the vertices of Th while preserving the mesh’s connectivity.

Blend map. Finally, we will make use of a blend map ψn,th which takes a straight triangle

K ∈ pn,th

(
T tn−1

h,2

)
to a curved triangle that conforms exactly to the boundary. The map we

employ is proposed in [5]. Letting u, v, w denote the vertices of K, the blend map reads

ψn,th (x) =
1

2(1− λu)
[λvγ

n,t
h (λuu+ (1− λu)v) + λuλwγ

n,t
h (u)]

+
1

2(1− λv)
[λuγ

n,t
h ((1− λv)u+ λvv) + λvλwγ

n,t
h (v)] + λww, (26)

where λu, λv, λw are the barycentric coordinates of x ∈ K. Here, we have employed the
convention the vertex w is the unique vertex of K lying inside Ωtn−1

. It is not difficult to
check that for fixed t, the blend map ψn,th maps points x lying on the edge uv to their images
under the boundary evolution map γn,th , preserves the location of the vertex w, and is affine
on the edges wu and wv.

Culmination. We now define Φn,t
h over each triangle K ∈ Snh with vertices u, v, w according

to

Φn,t
h (x) =


λup

n,t
h (u) + λvp

n,t
h (v) + λwp

n,t
h (w) if K ∈ T tn−1

h,0

λuγ
n,t
h (u) + λvp

n,t
h (v) + λwp

n,t
h (w) if K ∈ T tn−1

h,1

ψn,th (λuu+ λvv + λwp
n,t
h (w)) if K ∈ T tn−1

h,2 ,

(27)

where λu, λv, λw are the barycentric coordinates of x ∈ K. Once again, we have employed
the convention that for triangles K ∈ T tn−1

h,2 , the vertex w is the unique vertex of K lying

inside Ωtn−1
, and for triangles K ∈ T tn−1

h,1 , the vertex u is the unique vertex of K lying outside

Ωtn−1
.

23

The domain evolution and its velocity. It is now straightforward to record explicit expressions
for the domain mapping ϕn,th and its material velocity V n,t

h . By definition,

ϕn,th = Φn,t
h ◦

(
Φ
n,tn−1

+

h

)−1

. (28)

The velocity field V n,t
h is then given by differentation with respect to time:

V n,t
h = Φ̇n,t

h ◦
(

Φ
n,tn−1

+

h

)−1

.

If the relaxation map pn,th is independent of time over (tn−1, tn] (as is the case for the
choice (25)), this expression for V n,t

h is given explicitly by

V n,t
h (X) =



0 if K ∈ T tn−1

h,0

λuγ̇
n,t
h (u) if K ∈ T tn−1

h,1

λv
2(1− λu)

γ̇n,th (λuu+ (1− λu)v) +
λuλw

2(1− λu)
γ̇n,th (u)

+
λu

2(1− λv)
γ̇n,th ((1− λv)u+ λvv) +

λvλw
2(1− λv)

γ̇n,th (v)
if K ∈ T tn−1

h,2 ,

(29)

where λu, λv, λw are the barycentric coordinates of (Φ
n,tn−1

+

h)−1(X) ∈ K, with the conventional
ordering of the vertices described earlier. Formulas for the time derivative of πt (which are
needed for the choice γn,th = πt ◦ πtn−1

) in terms of local measures of the boundary’s shape
and velocity are given in Appendix B.

5.2. Alternative: Isoparametric Approximation of the Domain

A convenient alternative to exact representations of the domain is to adopt superpara-
metric or isoparametric representations of the domain. This entails approximating the map
Φn,t
h (and hence the domain Ωt) with a polynomial interpolant

Φn,t
h,approx(X̃) =

∑
a

M̃a(X̃)Φn,t
h (Ỹa) (30)

constructed from shape functions M̃a of a triangular Lagrange element (henceforth termed
Lagrange shape functions) with corresponding degrees of freedom Ỹa on the reference trian-
gulation Snh . In this way, expressions for the spatial derivatives of the corresponding shape
functions

Na,approx = Ña ◦
(

Φ
n,tn−1

+

h,approx

)−1

(31)

and
nta,approx = Ña ◦

(
Φn,t
h,approx

)−1

24

involve only derivatives of the reference triangulation’s shape functions Ña and the Lagrange
shape functions M̃a, and not the gradients of the exact map Φn,t

h :

∇XNa,approx(X) = ∇X̃Ña(X̃) ·
(
∇X̃Φ

n,tn−1
+

h,approx

)−1

= ∇X̃Ña(X̃) ·
(∑

a

∇X̃M̃a(X̃)Φ
n,tn−1

+

h (Ỹa)

)−1

∇xn
t
a,approx(x) = ∇X̃Ña(X̃) ·

(
∇X̃Φn,t

h,approx

)−1
= ∇X̃Ña(X̃) ·

(∑
a

∇X̃M̃a(X̃)Φn,t
h (Ỹa)

)−1

.

This, in turn, eliminates the need to compute gradients of the closest point projection πt.
This, and other reasons detailed later, make approximating the domain in this way more
computationally convenient in practice.

For completeness, we next detail the corresponding approximate domain map

ϕn,tapprox = Φn,t
h,approx ◦

(
Φ
n,tn−1

+

h,approx

)−1

and velocity fields, which take particularly simple forms. In fact, with

ya(t) = Φn,t
h (Ỹa)

denoting the trajectory of a degree of freedom Ỹa and

Ma = M̃a ◦
(

Φ
n,tn−1

+

h,approx

)−1

denoting the pushforward of the Lagrange shape functions M̃a to Ωtn−1
, we have

ϕn,th,approx(X) = Φn,t
h,approx

((
Φ
n,tn−1

+

h,approx

)−1

(X)

)
=
∑
a

M̃a

((
Φ
n,tn−1

+

h,approx

)−1

(X)

)
Φn,t
h (Ỹa)

=
∑
a

Ma(X)ya(t).

The corresponding material and spatial velocity fields are thus

V n,t
h,approx(X) =

∑
a

Ma(X)ẏa(t)

and
vn,th,approx(x) =

∑
a

mt
a(x)ẏa(t),

respectively, with mt
a = M̃a ◦

(
Φn,t
h,approx

)−1
.

Introducing approximations of the domain requires some extra care in the imposition
of boundary conditions. In the example problem here, homogeneous Dirichlet boundary

25

conditions are imposed on the boundary of the approximate domain. Therefore, the order of
the Lagrange shape functions M̃a should be high enough to ensure that the errors introduced
by approximating Ωt with Φn,t

h,approx(Snh) converge to zero at least as quickly as the error in
the original spatial discretization as h→ 0. It is well-known [62] that if the shape functions
Ña are themselves Lagrange shape functions, then it suffices to use Lagrange shape functions
M̃a of equal or higher degree for the approximation of the domain geometry. Elements of this
type are referred to as isoparametric or superparametric elements, depending upon whether
the functions M̃a have equal or higher degree, respectively, than the functions Ña.

5.3. Example: A Complete Algorithm

We now present an algorithm that takes advantage of the SDIRK method of §4.3 for time
integration and of the isoparametric representation of the domain of §5.2. For concreteness,
we consider the case in which the partial differential operator a(u) = −∆xu, so that

at(u,w) =

∫
Ωt
∇xu · ∇xw dx,

In what follows, we denote matrices and vectors with uppercase and lowercase boldface
letters, respectively. As shorthand notation, we denote by

(u,w)Kt =

∫
Kt

u(x)w(x) dx

the inner product of two functions u and w over an element Kt = Φn,t
h (K), K ∈ Snh . The

algorithm is labeled Algorithm 5.1.

Implementation. We discuss some key steps of the algorithm next, to show how the motion
of the domain is accounted for in the implementation of the algorithm, and how it affects
the computation of elemental quantities such as the mass matrix. For concreteness, in the
following it is useful to keep in mind a very simple example, such as when the moving domain
Ωt is the circle centered at the origin of radius 1+t, for each small t ≥ 0 (this is the geometry
used to draw Fig. 9 later). Without loss of generality, we discuss the case in which n = 1, so
that tn−1 = 0. Finally, we will also use the standard triangle K̂, such as that with vertices
(0, 0), (0, 1), and (1, 0), which has traditionally been used in finite element codes to perform
quadrature.

In step 2 we identify triangles in T 0
h,i, for i = 0, 1, 2, by labeling vertices of triangles in

the universal mesh according to whether they are inside or outside Ω0. For example, Fig. 9
shows one triangle K̃ ∈ T 0

h,2. For this example K̃ will be assumed to be quadratic and hence

consists of 6 nodes, with its nodes labeled by Ỹa, a = 1, . . . , 6.
In step 3, the positions {Ya}a of these six nodes in the mesh conforming to Ω0 are

computed, and in general, of all nodes in triangles intersecting ∂Ω0. This computation
involves computing the closest point projection for nodes Ỹ1, Ỹ2, Ỹ3, and Ỹ5, moving the first
3 nodes to their closest point projections, and moving Ỹ5 along the normal to the boundary
emanating from its closest point projection, according to (25). Nodes Ỹ4 and Ỹ6 are then
mapped to the midpoints of segments Y3Y5 and Y1Y5, respectively. These six nodes define the
isoparametric quadratic triangle K = Φ

1,0+
h,approx(K̃). Henceforth, the construction of shape

26

Algorithm 5.1 Time integration using a universal mesh with an s-stage SDIRK method

Require: Initial condition u0 ∈ H1
0 (Ω0).

1: for n = 1, 2, . . . , N do

2: Identify triangles in T tn−1

h,i , i = 0, 1, 2. Set Snh = T tn−1

h,0 ∪ T tn−1

h,1 ∪ T tn−1

h,2 .

3: Compute Φ
n,tn−1

+

h (Ỹa) for every degree of freedom Ỹa ∈ D(Snh) using (27).

4: Set Vnh = span{Na,approx}a, where {Na,approx}a are the shape functions (31).

5: Project u∆t,n−1
h ∈ (ϕn−1,tn−1

h)∗Vn−1
h (or u0 if n = 1) onto Vnh using a projector pnh. Denote

by u0 the vector of coefficients in the expansion

pnhu
∆t,n−1
h =

∑
a

(u0)aNa,approx.

6: for i = 1, 2, . . . , s do
7: Compute Φn,ti

h (Ỹa) for every degree of freedom Ỹa ∈ D(Snh) using (27).
8: With Kti = Φti

h,approx(K) for every K ∈ Snh , assemble

Mab =
∑
K

(
ntib,approx, n

ti
a,approx

)
Kti

Bab =
∑
K

(
vn,tih,approx · ∇xn

ti
b,approx, n

ti
a,approx

)
Kti

Kab =
∑
K

(
∇xn

ti
b,approx, ∇xn

ti
a,approx

)
Kti

fa =
∑
K

(
f(ti), n

ti
a,approx

)
Kti

9: With u∗ =
∑i−1

j=0 βijuj and ∆tn = tn − tn−1, define

A = M + γ∆tn(K−B)

b = Mu∗ + f

10: For every degree of freedom Ỹa /∈ int(D(Snh)), set

Aab = δab

ba = 0.

11: Solve Aui = b for ui.
12: end for
13: Set u∆t,n

h (x) =
∑

a(us)an
tn

a,approx(x).
14: end for
15: return u∆t,N

h

27

(a) Construction of Φ
1,0+

h,approx(K̃) for K̃ ∈ T 0
h,2 (b) Construction of Φ1,t

h,approx(K̃) for K̃ ∈ T 0
h,2, 0 <

t ≤ ∆t

Figure 9: Example of how the approximate evolving domain is accounted for in practice. See text in §5.3
for the explanation.

functions and quadrature rules follow standard finite element procedures over isoparametric
elements. For example, in this case, K = Ψ̂(K̂), where the isoparametric map is Ψ̂(X̂) =∑6

a=1 YaN̂a(X̂) and {N̂a}a denote the shape functions over K̂. This is equivalent to (30).

In step 4, the shape functions over K are constructed. Because the map between K̂ and K̃
is affine, the shape function {Na,approx}a can be constructed over K̂, namely, Na,approx(X) =

N̂a(Ψ̂
−1(X)), for X ∈ K. This is, again, standard procedure for isoparametric elements.

As the boundary of the domain moves at each stage i of the time integration, the nodes
{Ya}a of triangle K are deformed as follows (step 7): Nodes Y1, Y2, Y3 are mapped to their
closest point projections onto ∂Ωti , labeled y1, y2, and y3, respectively, node Y5 remains where
it is, so y5 = Y5, and nodes Y4 and Y6 are mapped to y4 and y6, the midpoints of edges y3y5

and y1y5, respectively, see Fig. 9b. Shape functions over triangle Kti are formed in precisely
the same way as those for triangle K, in this case with nodal positions {ya}a.

To assemble the system needed to solve (20) at each stage of the time integration (step

28

8) it is useful to notice that the elemental mass matrix for each element is computed as

MK
ab =

∫
Kti

ntia,approxn
ti
b,approx dx

=

∫
K

Na,approxNb,approx|∇Xϕ
1,ti
h,approx| dX

=

∫
K̃

ÑaÑb|∇X̃Φ1,ti
h,approx| dX̃

=

∫
K̂

N̂aN̂b|∇X̂Ψ̂| dX̂,

(32)

and similarly for the elemental contributions to the other terms of (20). Consequently,
quadrature could be performed on any of the triangles K, K̃, K̂, or Kti , but for convenience
and following standard practice, we do it over the standard element K̂.

Notice then that, in order to perform the quadrature over K̂, it is convenient to build
the deformed mesh at time ti, since it makes the construction of Ψ̂ straightforward. So, in
this time-integration scheme the deformed mesh is built s times in a time step.

An important practical matter we wish to highlight is the simplicity of the data struc-
tures needed to implement our method. In particular, the connectivity of the universal mesh
never changes during deformation – only the nodal positions change. As a consequence,
the sizes and sparsity structures of various discrete quantities (the solution vector u, the
mass matrix M, the stiffness matrix K, the convection matrix B, and the forcing vector f)
can be held fixed, even though differing subsets of degrees of freedom may participate in
the discrete equations at different intervals (tn−1, tn]. This can be accomplished by simply
imposing “homogeneous Dirichlet boundary conditions” on the solution at degrees of free-
dom not belonging to the subtriangulation Snh . In practice, this amounts to replacing the
corresponding rows of a particular matrix A with rows whose only nonzero entries are 1
on the diagonal, and setting to zero the corresponding entries of a vector (see step 10 of
Algorithm 5.1). Note that A is automatically asymmetric at the outset, so any concerns of
breaking symmetry via row replacement are irrelevant.

5.4. Exact vs. Approximate Map: Cost Considerations

The computational cost of evaluating the map Φn,t
h or its approximant Φn,t

h,approx is domi-
nated by the cost of evaluating closest-point projections onto ∂Ωt. In our numerical exper-
iments (which used Φn,t

h,approx), these calculations accounted for little more than 5 − 10% of
the total run time of a typical simulation.

Note that implementations that employ the exact map Φn,t
h require evaluations of the

closest point projection and its gradient at quadrature points in triangles K ∈ T tn−1

h,1 ∪T tn−1

h,2 ,

whereas implementations that employ the approximate map Φn,t
h,approx require evaluations

only of the closest point projection (not its gradient) on those triangles’ degrees of freedom.
A counting argument reveals that the computational savings that accompany the use of
Φn,t
h,approx over Φn,t

h are significant: For a polynomial interpolant Φn,t
h,approx constructed from

Lagrange elements of a fixed polynomial degree, it is not difficult to show that the use
of Φn,t

h,approx over Φn,t
h reduces the computational cost (measured by number of closest point

projection evaluations) by factors of 9, 9, and 5.2, respectively, for affine, quadratic, and cubic

29

Lagrange elements, assuming the use of a quadrature rule that exactly computes entries of
the elemental mass matrix on straight triangles.

5.5. Error estimate for a universal mesh

We conclude this section by applying the error estimate (21) to the case in which the
maps Φn,t

h are constructed from a universal mesh according to the algorithm in Section 5.1.
It is shown in our forthcoming paper [6] that for u and Ω sufficiently regular, there exist

constants B, c, C, C̄1(u, T), and C̄2(u, T), independent of h, N , and ∆t, such that

C1(u, vh, T) ≤ `h,rh
−1/2C̄1(u, T) (33)

C2(u, vh, T) ≤ C̄2(u, T) (34)

N ≤ BT∆t−1 (35)

|Rn
h| ≤ Ch, n = 1, 2, . . . , N (36)

as long as
c max

1≤n≤N
(tn − tn−1) ≤ h (37)

and
max

1≤n≤N
(tn − tn−1) ≤ B min

1≤n≤N
(tn − tn−1),

where `h,r is given by (22). We remind the reader that ∆t ≤ min1≤n≤N(tn − tn−1).
Relations (33-36) imply that the numerical solution obtained from the proposed strategy

has the accuracy stated in (23), that is,

‖u∆t,N
h − uN‖0,2,ΩT ≤ C(u, T)

(
`h,rh

r−1/2 + ∆tq + `h,rh
r+1/2∆t−1

)
. (38)

When ∆t and h scale proportionately, this convergence rate is suboptimal by half an order
(up to a logarithmic factor if r = 2).

Time step restriction. Notice that the text above included the restriction (37), which implies
a restriction on the time step of the form c∆t ≤ h. The necessity of such a restriction is
made clear by noting that the mesh motion defined by ϕn,th , t ∈ (tn−1, tn], leaves all elements
stationary except those with an edge on the moving boundary. Imposing (37) with a suitable
choice of c ensures that the image under ϕn,th of each such element has an aspect ratio that is
bounded above and below uniformly in h for all times t ∈ (tn−1, tn]. In particular, it ensures
that no element collapses to a set of nonpositive measure at any time t ∈ (tn−1, tn]. Note
that this restriction is intrinsic to the mesh motion strategy; it is a restriction that must be
imposed in addition to any time step restriction needed to ensure stability of the particular
time integrator chosen.

Explanation of estimate. Let us briefly describe how the dependencies (33-36) arise. To
begin, consider the regularity of the velocity field vh. The proposed strategy employs a
velocity field that is of order unity on the boundary of Ωt and decays to zero over a strip
of neighboring elements, i.e. a strip of width O(h). It follows that the velocity field itself
is everywhere of order unity, but its spatial gradient is of order h−1. Moreover, the support
of vn,th and its derivatives (the strip of neighboring elements) has measure O(h). From these

30

observations, a simple calculation reveals that the L2 norm of ∇xv
n,t
h is of order h−1/2. It is

this fact that contributes to the dependence of C1(u, vh, T) on h−1/2. The factor `h,r arises
because of the approximation properties in the L∞-norm of piecewise linear finite element
spaces.

Consider next the relation (36). The quantity |Rn
h|measures the discrepancy between two

triangulations of the same domain Ωtn−1
, namely Φn−1,tn−1

h (Sn−1
h) and Φ

n,tn−1
+

h (Snh). By (25)
and (27), these triangulations differ only in a neighborhood of ∂Ωtn−1

that has measure
O(h). A consequence of this fact is that the contribution to the error associated with
projecting the solution onto a new finite element space at each temporal node tn is of order
Nhr+1/2 ∼ hr+1/2∆t−1, rather than of the order Nhr ∼ hr∆t−1 that one might expect if the
triangulations had differed over the entire domain.

Notice that the terms `h,rh
r−1/2 and `h,rh

r+1/2∆t−1 in (38) are balanced when ∆t ∼ h.
Roughly speaking, the asymptotically unbounded gradient of vn,th introduces a half-order
reduction in the spatial discretization error (ordinarily hr), but the small support of vn,th
mitigates the reduction of order introduced by the repeated projections (ordinarily a full
order) to half an order.

Optimal balance. Given the half-order reduction in error associated with the use of a veloc-
ity field vn,th whose support has measure O(h), it is tempting to consider the possibility of
employing mesh motions with more broadly supported velocity fields. An immediate conse-
quence of such a decision, however, is an increase in the error hr`h,r|Rn

h|1/2 associated with

changing finite element spaces. Indeed, if the triangulations Φn−1,tn−1

h (Sn−1
h) and Φ

n,tn−1
+

h (Snh)
differ over a region of measure O(1), then |Rn

h| is of order 1 rather than of order h. The
resulting total error estimate is suboptimal by one order rather than half an order when
N = O(∆t−1). For this reason, the strategy as it has been presented at the outset can be
said to provide an optimal balance between competing sources of error.

Note, however, that if the finite element spaces are changed less frequently (i.e. N =
O(1)), then optimal order accuracy is, in principle, obtainable via the use of more broadly
supported velocity fields. This is precisely what is accomplished by conventional ALE
schemes, which adopt global mesh motion strategies (in which all nodes of the mesh partic-
ipate) and remesh occasionally (at temporal nodes tn whose separation in time is of order
unity). The price to be paid for such a decision, of course, is a reduction in the efficiency and
robustness of the mesh motion strategy. Conventional ALE mesh motions commonly require
the solution of systems of equations (such as those of linear elasticity) for the positions of
mesh nodes [36, 37, 38, 39]; in contrast, the nodal motions in our method are independent
and explicitly defined, rendering the mesh motion strategy low-cost and easily parallelizable.
Second, our mesh motion strategy is robust in the sense that it enjoys provable bounds
on the quality of the deformed mesh under suitable constraints on the time step and mesh
spacing [5, 6].

6. Numerical Examples

In this section, we apply the proposed method to a modification of a classical moving-
boundary problem: Stefan’s problem. In our modification, the evolution of the boundary is
imposed through the exact solution, instead of being computed. Our aim in this example is

31

is to illustrate the convergence rate of the method with respect to the mesh spacing h and
time step ∆t.

We begin by demonstrating, using a one-dimensional numerical test, that the bound (38)
is sharp. That is, the order of accuracy of the method is suboptimal by half an order in the
L2 norm when ∆t and h scale proportionately. We observe, however, that the suboptimal
rate is difficult to detect from an inspection of the total error ‖uN,∆th − uN‖0,2,ΩT , since the
terms of suboptimal order contributing to the total error are dominated by terms of optimal
order (for practical values of the mesh spacing h). We follow with a convergence test in two-
dimensions, where, for the reason just described, optimal rates are observed for the total
error.

6.1. The (Modified) One-Dimensional Stefan Problem with Prescribed Boundary Evolution

Consider the following instance of the one-dimensional Stefan problem: Find u(x, t) and
s(t) such that

∂u

∂t
=
∂2u

∂x2
, 0 < x < s(t), t ≥ 1 (39a)

ds

dt
= −∂u

∂x
, x = s(t) (39b)

u(0, t) = et − 1, t ≥ 1 (39c)

u(s(t), t) = 0, t ≥ 1 (39d)

u(x, 1) = e1−x − 1, 0 ≤ x ≤ 1 (39e)

s(1) = 1. (39f)

The exact solution is

u(x, t) = et−x − 1

s(t) = t.

In this case, we treat the boundary evolution as prescribed by supplying the exact evolution
s(t), instead of solving for it by integrating (39b).

We computed the numerical solution u∆t,N
h using a finite element space made of contin-

uous elementwise-affine functions on a sequence of uniform meshes with spacing h = 2−kh0,
k = 0, 1, 2, 3 over the time interval [1, T] with h0 = 1/4 and T = 1 + 10−6 (the short time
interval was chosen, on the basis of numerical experiments, in order to detect the suboptimal
rate predicted by the theory). The restriction of the algorithm to a single spatial dimen-
sion is that specified in Algorithm 2.1, and is complemented with the choice pnh = pnh,L2 for
the projection, relaxation parameters δ = 0.3 and R = 3, and the singly diagonally implicit
Runge-Kutta (SDIRK) scheme of order 2 given in Table A.3 with a time step ∆t = 10−6h/h0

for time-integration.
Table 1 presents the convergence of the method measured at time t = T in L2(ΩT). The

third column of the table suggests that the total error ‖u∆t,N
h − uN‖0,2,ΩT converges at an

optimal rate O(h2). However, columns 1 and 2 reveal that a piece of the error, namely
the discrepancy between the numerical solution u∆t,N

h and the nodal interpolant it
N

h u
N of

32

Table 1: Convergence rates in the L2-norm on ΩT for the solution to the (modified) one-dimensional Stefan
problem using a finite element space made of continuous elementwise-affine functions with a second-order
implicit Runge-Kutta time integrator, see §6.1. Differences between the exact solution uN , the numerical

approximation u∆t,N
h , and the nodal interpolant of the exact solution it

N

h uN are shown in each column.
These values are used in §6.1 to illustrate that the expected theoretical convergence rate of h3/2 is observed.
Nevertheless, the slowly converging part is so small, that the apparent convergence rate is h2, as the third
column shows.

h0/h ‖u∆t,N
h − itNh uN‖0,2,ΩT Order ‖itNh uN − uN‖0,2,ΩT Order ‖u∆t,N

h − uN‖0,2,ΩT Order

1 1.2e-11 - 4.4e-05 - 4.4e-05 -
2 4.6e-12 1.42 1.1e-05 2.04 1.1e-05 2.04
4 1.6e-12 1.49 2.6e-06 2.02 2.6e-06 2.02
8 5.5e-13 1.56 6.5e-07 2.01 6.5e-07 2.01

Table 2: Convergence rates in the L2-norm on ΩT for the solution to the (modified) two-dimensional Stefan
problem (40) using linear, quadratic, and cubic elements together with nodal interpolation as the projec-
tion operator, and second-, third-, and fourth-order implicit Runge-Kutta schemes, respectively, as time
integrators. See Fig. 10 for a graphical depiction of the same results.

Linear Quadratic Cubic
h0/h Error Order Error Order Error Order

1 3.0e-02 - 1.3e-03 - 2.9e-05 -
2 9.8e-03 1.59 1.4e-04 3.21 3.1e-06 3.24
4 2.6e-03 1.94 2.1e-05 2.66 2.2e-07 3.84
8 6.4e-04 2.00 2.6e-06 3.03 1.4e-08 3.97
16 1.6e-04 2.00 3.3e-07 2.97 - -

the exact solution, decays at a suboptimal rate O(h3/2). Since standard estimates from the
theory of interpolation give ‖uN − itNh uN‖0,2,ΩT = O(h2), it follows from the inequality

‖u∆t,N
h − itNh uN‖0,2,ΩT ≤ ‖u∆t,N

h − uN‖0,2,ΩT + ‖uN − itNh uN‖0,2,ΩT

that ‖u∆t,N
h − uN‖0,2,ΩT must be decaying no faster than O(h3/2). However, the contribution

to the error supplied by u∆t,N
h − it

N

h u
N is several orders of magnitude smaller than the

remaining contribution, it
N

h u
N − uN , explaining the apparent optimal rate observed for the

total error.

6.2. The (Modified) Two-Dimensional Stefan Problem with Prescribed Boundary Evolution

We consider now the following instance of the two-dimensional, cylindrically symmetric
Stefan problem with a circular boundary of radius ρ(t) centered at the origin. Find the

33

h

L
2
er
ro
r

h2

h3

h4

10−8

10−6

10−4

10−2

10−2 10−1 100

Linear

Quadratic

Cubic

Figure 10: (a) L2-error ‖u∆t,N
h − uN‖0,2,ΩT at a fixed final time as a function of the mesh spacing h for the

(modified) two-dimensional Stefan problem (40) with prescribed boundary evolution. The problem was solved
using linear, quadratic, and cubic elements together with nodal interpolation as the projection operator,
and second-, third-, and fourth-order implicit Runge-Kutta schemes, respectively, as time integrators, with
h ∝ ∆t.

scalar functions u(x, t) and ρ(t) such that for all times t ∈ [0, T],

∂u

∂t
−∆xu = f, 0 ≤ |x| < ρ(t) (40a)

dρ

dt
= −∂u

∂n
, |x| = ρ(t) (40b)

u(x, t) = 0, |x| = ρ(t) (40c)

u(x, 0) = J0(r0|x|), (40d)

ρ(0) = 1, (40e)

where J0 is the zeroth-order Bessel function of the first kind, r0 is the smallest positive root
of J0, and

f(x, t) =
αr3

0β(t)2|x|
2σ(t)3

J ′0

(
r0|x|
σ(t)

)
σ(t) = exp

(
α(β(t)− 1)

2

)
β(t) =

1

α
Ei−1

(
Ei(α)− r2

0te
α
)

α =
2J ′0(r0)

r0

.

34

X
Y

Z

(a) t = 0

X
Y

Z

(b) t = 0.02

X
Y

Z

(c) t = 0.04

X
Y

Z

(d) t = 0.06

Figure 11: Solution to a prescribed-boundary variant of the Stefan problem in which the moving boundary
is a sinusoidal perturbation of the unit circle.

Here, Ei(z) = −
∫∞
−z

e−ζ

ζ
dζ, the exponential integral. The exact solution is

u(x, t) = β(t)J0

(
r0|x|
σ(t)

)
ρ(t) = σ(t).

In our implementation, we treat the boundary evolution as prescribed by supplying the
exact evolution of the moving domain’s radius ρ(t), instead of solving for it. To study the
convergence of the method, the problem was solved using finite element spaces of continuous
functions that are affine, quadratic, and cubic over each element (linear, quadratic, and cubic
Lagrange elements) together with nodal interpolation as the projection operator, relaxation
parameters δ = 0.8 and R = 3, and singly diagonally implicit Runge-Kutta (SDIRK) schemes
of orders 2, 3, and 4, respectively, as the time integrators (see the coefficients in Tables A.3-
A.5). The solution was computed on a uniform mesh of equilateral triangles with a lowest
resolution mesh spacing of h0 = 0.35 and a time step ∆t = Th/h0, up to a final time
T = 0.005.

Fig. 10 displays the L2-error of the numerical solution as a function of the mesh spacing
h at t = T . Optimal convergence orders of 2, 3, and 4 are observed for the three schemes, in
agreement with the observations made in the one-dimensional test case. Table 2 shows the
same results.

To illustrate the method on a second, more interesting example, we solved the partial
differential equation (40a) with homogeneous Dirichlet boundary conditions and initial con-

35

(a) Universal mesh (b) t = 0.06

Figure 12: (a) Universal mesh adopted during the simulation depicted in Fig. 11, and (b) its image under
the universal mesh map at t = 0.06, superposed with the contours of the solution.

dition

u(x) = J0

(
10r0|x|

10 + cos 10θ

)
on a prescribed domain Ωt whose boundary is given by a sinusoidal perturbation of the unit
circle. Namely,

Ωt =

{
x
∣∣ |x| < 1 +

1

10
cos 10θ cos 250t

}
with θ = tan−1(x2/x1). Fig. 11 shows snapshots of the solution, which was computed
using quadratic Lagrange elements on a uniform mesh of equilateral triangles (h = 0.04375)
together with nodal interpolation as the projection operator, relaxation parameters δ = 0.8
and R = 3, and the third-order SDIRK scheme (A.4) with time step ∆t = 0.000625. The
universal mesh and its image under the universal mesh map at an instant in time are shown
in Fig. 12.

7. Conclusion

We have presented a general framework for the design of high-order finite element meth-
ods for moving boundary problems with prescribed boundary evolution. A key role in our
approach was played by universal meshes, which combine the immunity to large mesh distor-
tions enjoyed by conventional fixed-mesh methods with the geometric fidelity of deforming-
mesh methods. A given accuracy in space and time may be achieved by choosing an ap-
propriate finite element space on the universal mesh and an appropriate time integrator for
ordinary differential equations. The order of accuracy of the resulting scheme is suboptimal
by one half an order according to theory, although we observed in our numerical examples
that terms of optimal order tend to dominate in practice.

Several aspects of this research motivate further study. First, we have yet to address
problems for which the boundary itself is an unknown, rather than prescribed. An extension

36

of the method to three dimensions is alluring. Finally, developing an analogous strategy for
domains with lower regularity, such as domains with corners, is an open problem.

8. Acknowledgments

This research was supported by the U.S. Department of Energy grant DE-FG02-97ER25308;
Department of the Army Research Grant, grant number: W911NF-07- 2-0027; and NSF Ca-
reer Award, grant number: CMMI-0747089.

9. References

[1] P. H. Saksono, W. G. Dettmer, D. Perić, An adaptive remeshing strategy for flows with
moving boundaries and fluid–structure interaction, International Journal for Numerical
Methods in Engineering 71 (9) (2007) 1009–1050.

[2] F. Gibou, R. Fedkiw, A fourth order accurate discretization for the Laplace and heat
equations on arbitrary domains, with applications to the Stefan problem, Journal of
Computational Physics 202 (2005) 577–601.

[3] R. H. Nochetto, A. Schmidt, C. Verdi, Adapting meshes and time-steps for phase change
problems. (1997).

[4] R. Rangarajan, A. J. Lew, Parameterization of planar curves immersed in triangulations
with application to finite elements, International Journal for Numerical Methods in
Engineering 88 (6) (2011) 556–585.

[5] R. Rangarajan, A. J. Lew, Universal meshes: a new paradigm for computing with
nonconforming triangulations, Submitted (2013) 1–25.

[6] E. Gawlik, A. J. Lew, Analysis of time integrators for moving-boundary problems,
(Preprint).

[7] D. R. Lynch, Unified approach to simulation on deforming elements with application to
phase change problems, Journal of Computational Physics 47 (1982) 387–411.

[8] P. Lesaint, R. Touzani, Approximation of the heat equation in a variable domain with
application to the Stefan problem, SIAM Journal on Numerical Analysis 26 (1989)
366–379.

[9] C. W. Hirt, A. A. Amsden, J. L. Cook, An arbitrary Lagrangian-Eulerian computing
method for all flow speeds, Journal of Computational Physics 14 (3) (1974) 227–253.

[10] T. J. R. Hughes, W. K. Liu, T. K. Zimmermann, Lagrangian-Eulerian finite element
formulation for incompressible viscous flows, Computer methods in applied mechanics
and engineering 29 (3) (1981) 329–349.

[11] J. Donea, S. Giuliani, J. P. Halleux, An arbitrary Lagrangian-Eulerian finite element
method for transient dynamic fluid-structure interactions, Computer Methods in Ap-
plied Mechanics and Engineering 33 (1) (1982) 689–723.

37

[12] M. Souli, A. Ouahsine, L. Lewin, ALE formulation for fluid–structure interaction prob-
lems, Computer methods in applied mechanics and engineering 190 (5) (2000) 659–675.

[13] P. Geuzaine, C. Grandmont, C. Farhat, Design and analysis of ALE schemes with
provable second-order time-accuracy for inviscid and viscous flow simulations, Journal
of Computational Physics 191 (1) (2003) 206–227.

[14] C. Farhat, P. Geuzaine, Design and analysis of robust ALE time-integrators for the
solution of unsteady flow problems on moving grids, Computer Methods in Applied
Mechanics and Engineering 193 (39) (2004) 4073–4095.

[15] C. Farhat, K. G. van der Zee, P. Geuzaine, Provably second-order time-accurate loosely-
coupled solution algorithms for transient nonlinear computational aeroelasticity, Com-
puter methods in applied mechanics and engineering 195 (17) (2006) 1973–2001.

[16] C. Farhat, A. Rallu, K. Wang, T. Belytschko, Robust and provably second-order
explicit–explicit and implicit–explicit staggered time-integrators for highly non-linear
compressible fluid–structure interaction problems, International Journal for Numerical
Methods in Engineering 84 (1) (2010) 73–107.

[17] N. Takashi, ALE finite element computations of fluid-structure interaction problems,
Computer methods in applied mechanics and engineering 112 (1) (1994) 291–308.

[18] W. K. Liu, H. Chang, C. J. Chen, T. Belytschko, Arbitrary Lagrangian-Eulerian Petrov-
Galerkin finite elements for nonlinear continua, Computer Methods in Applied Mechan-
ics and Engineering 68 (3) (1988) 259–310.

[19] J. Wang, M. S. Gadala, Formulation and survey of ALE method in nonlinear solid
mechanics, Finite Elements in Analysis and Design 24 (4) (1997) 253–269.

[20] H. Askes, E. Kuhl, P. Steinmann, An ALE formulation based on spatial and material
settings of continuum mechanics. Part 2: Classification and applications, Computer
Methods in Applied Mechanics and Engineering 193 (39) (2004) 4223–4245.

[21] A. R. Khoei, M. Anahid, K. Shahim, An extended arbitrary Lagrangian–Eulerian finite
element method for large deformation of solid mechanics, Finite Elements in Analysis
and Design 44 (6) (2008) 401–416.

[22] J. M. Sullivan, D. R. Lynch, Finite element simulation of planar instabilities during
solidification of an undercooled melt, Journal of Computational Physics 69 (1987) 81–
111.

[23] N. Zabaras, Y. Ruan, Moving and deforming finite-element simulation of two-
dimensional Stefan problems, Communications in Applied Numerical Methods 6 (1990)
495–506.

[24] M. R. Albert, K. O’Neill, Moving boundary-moving mesh analysis of phase change using
finite elements with transfinite mappings, International Journal for Numerical Methods
in Engineering 23 (1986) 591–607.

38

[25] G. Beckett, J. A. Mackenzie, M. L. Robertson, A moving mesh finite element method
for the solution of two-dimensional Stefan problems, Journal of Computational Physics
168 (2001) 500–518.

[26] D. Boffi, L. Gastaldi, Stability and geometric conservation laws for ALE formulations,
Computer methods in applied mechanics and engineering 193 (42) (2004) 4717–4739.

[27] J. A. Mackenzie, W. R. Mekwi, An unconditionally stable second-order accurate ALE–
FEM scheme for two-dimensional convection–diffusion problems, IMA Journal of Nu-
merical Analysis 32 (3) (2012) 888–905.

[28] L. Formaggia, F. Nobile, Stability analysis of second-order time accurate schemes for
ALE–FEM, Computer methods in applied mechanics and engineering 193 (39) (2004)
4097–4116.

[29] L. Formaggia, F. Nobile, A stability analysis for the arbitrary Lagrangian Eulerian
formulation with finite elements, East West Journal of Numerical Mathematics 7 (1999)
105–132.

[30] L. Gastaldi, A priori error estimates for the arbitrary Lagrangian Eulerian formulation
with finite elements, Journal of Numerical Mathematics 9 (2) (2001) 123–156.

[31] A. Bonito, I. Kyza, R. H. Nochetto, Time-discrete higher order ALE formulations:
Stability, (Preprint).

[32] A. Bonito, I. Kyza, R. H. Nochetto, Time-discrete higher order ALE formulations: A
priori error analysis, (Preprint).

[33] F. Aymone, J. Luis, Mesh motion techniques for the ale formulation in 3d large defor-
mation problems, International journal for numerical methods in engineering 59 (14)
(2004) 1879–1908.

[34] P. Z. Bar-Yoseph, S. Mereu, S. Chippada, V. J. Kalro, Automatic monitoring of element
shape quality in 2-D and 3-D computational mesh dynamics, Computational Mechanics
27 (5) (2001) 378–395.

[35] A. Masud, Effects of mesh motion on the stability and convergence of ALE based formu-
lations for moving boundary flows, Computational Mechanics 38 (4-5) (2006) 430–439.

[36] J.-P. P. J. Donea, A. Huerta, A. Rodriguez-Ferran, Encyclopedia of Computational
Mechanics, John Wiley and Sons, Ltd., New York, 2004, Ch. 14: Arbitrary Lagrangian-
Eulerian Methods.

[37] C. Farhat, C. Degand, B. Koobus, M. Lesoinne, Torsional springs for two-dimensional
dynamic unstructured fluid meshes, Computer methods in applied mechanics and engi-
neering 163 (1) (1998) 231–245.

[38] A. A. Johnson, T. E. Tezduyar, Mesh update strategies in parallel finite element com-
putations of flow problems with moving boundaries and interfaces, Computer methods
in applied mechanics and engineering 119 (1) (1994) 73–94.

39

[39] B. T. Helenbrook, Mesh deformation using the biharmonic operator, International jour-
nal for numerical methods in engineering 56 (7) (2003) 1007–1021.

[40] T. E. Tezduyar, S. Sathe, T. Cragin, B. Nanna, B. S. Conklin, J. Pausewang,
M. Schwaab, Modelling of fluid–structure interactions with the space–time finite ele-
ments: Arterial fluid mechanics, International Journal for Numerical Methods in Fluids
54 (6-8) (2007) 901–922.

[41] R. Bonnerot, P. Jamet, A second order finite element method for the one-dimensional
Stefan problem, International Journal for Numerical Methods in Engineering 8 (1974)
811–820.

[42] R. Bonnerot, P. Jamet, A third order accurate discontinuous finite element method
for the one-dimensional Stefan problem, Journal of Computational Physics 32 (1979)
145–167.

[43] P. Jamet, Galerkin-type approximations which are discontinuous in time for parabolic
equations in a variable domain, SIAM Journal on Numerical Analysis 15 (1978) 912–928.

[44] S. Rhebergen, B. Cockburn, Space-time hybridizable discontinuous galerkin method for
the advection–diffusion equation on moving and deforming meshes, in: The Courant–
Friedrichs–Lewy (CFL) Condition, Springer, 2013, pp. 45–63.

[45] S. Rhebergen, B. Cockburn, A space–time hybridizable discontinuous galerkin method
for incompressible flows on deforming domains, Journal of Computational Physics
231 (11) (2012) 4185–4204.

[46] C. S. Peskin, The immersed boundary method, Acta Numerica 11 (0) (2002) 479–517.

[47] R. J. Leveque, Z. Li, The immersed interface method for elliptic equations with discon-
tinuous coefficients and singular sources, SIAM Journal on Numerical Analysis 31 (4)
(1994) 1019–1044.

[48] E. A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-boundary
finite-difference methods for three-dimensional complex flow simulations, Journal of
Computational Physics 161 (1) (2000) 35–60.

[49] H. S. Udaykumar, R. Mittal, P. Rampunggoon, A. Khanna, A sharp interface cartesian
grid method for simulating flows with complex moving boundaries, Journal of Compu-
tational Physics 174 (1) (2001) 345–380.

[50] J. A. Sethian, Level set methods and fast marching methods : evolving interfaces in
computational geometry, fluid mechanics, computer vision, and materials science, Cam-
bridge University Press, Cambridge, 1999.

[51] P. Zhao, J. C. Heinrich, Front-tracking finite element method for dendritic solidification,
Journal of Computational Physics 173 (2001) 765–796.

40

[52] S. Xu, Z. Wang, An immersed interface method for simulating the interaction of a fluid
with moving boundaries, Journal of Computational Physics 216 (2006) 454–493.

[53] N. Palle, J. Dantzig, An adaptive mesh refinement scheme for solidification problems,
Metallurgical and Materials Transactions 27 (1996) 707–717.

[54] R. H. Nochetto, M. Paolini, C. Verdi, An adaptive finite element method for two-
phase Stefan problems in two space dimensions. Part I: Stability and error estimates,
Mathematics of Computation 57 (1991) 73–108.

[55] J. Baiges, R. Codina, The fixed-mesh ALE approach applied to solid mechanics and
fluid–structure interaction problems, International journal for numerical methods in
engineering 81 (12) (2010) 1529–1557.

[56] J. Baiges, R. Codina, H. Coppola-Owen, The fixed-mesh ALE approach for the numeri-
cal simulation of floating solids, International Journal for Numerical Methods in Fluids
67 (8) (2011) 1004–1023.

[57] G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, Sin-
gapore, 1996.

[58] A. Ern, J. L. Guermond, Theory and Practice of Finite Elements, Springer, New York,
2004.

[59] K. Burrage, J. C. Butcher, F. H. Chipman, An implementation of singly-implicit Runge-
Kutta methods, BIT Numerical Mathematics 20 (3) (1980) 326–340.

[60] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and DIfferential-
Algebraic Problems, Springer, Berlin, 2002.

[61] R. Rangarajan, A. J. Lew, Analysis of a method to parameterize planar curves immersed
in triangulations, SIAM Journal on Numerical Analysis 51 (3) (2013) 1392–1420.

[62] S. C. Brenner, L. R. Scott, The Mathematical Theory of Finite Element Methods,
Springer, New York, 1994.

[63] W. Ying, C. S. Henriquez, D. J. Rose, Composite backward differentiation formula: an
extension of the TR-BDF2 scheme, Submitted to Applied Numerical Mathematics.

Appendix A. Singly Diagonally Implicit Runge Kutta time integrators.

Tables A.3-A.5 record the coefficients γ > 0 and βij ∈ R, i = 1, 2, . . . , s, j = 0, 1, . . . , i−1
for a collection of SDIRK methods (20) of orders 2 through 4.

Note that the structure of the Runge-Kutta stages in (20) differs from the structure
that is most familiar to Runge-Kutta practitioners [60]. The former structure, which is
algorithmically better-suited for problems with time-dependent mass matrices, is obtainable

41

Table A.3: Coefficients βij for a s = 2-stage SDIRK scheme of order 2. (γ = 1−
√

2/2)

i \ j 0 1

1 1

2 −
√

2 1 +
√

2

Table A.4: Coefficients βij for a s = 3-stage SDIRK scheme of order 3. (γ = 0.43586652150845899942)

i \ j 0 1 2

1 1.00000000000000000

2 0.352859819860479140 0.647140180139520860

3 −1.25097989505606042 3.72932966244456977 −1.47834976738850935

from any L-stable SDIRK scheme as follows. Let aij, bj, and cj, i, j = 1, 2, . . . , s, be the
coefficients of an SDIRK scheme with Butcher tableaux

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass
b1 b2 · · · bs

(A.1)

By definition, a11 = a22 = · · · = ass and aij = 0 for j > i. Assume that the scheme is
L-stable, i.e. bj = asj, j = 1, 2, . . . , s. Then the coefficients γ and βij in the formulation (20)
are related to aij, bj, and cj via

γ = a11

βij =

{
δij − a∗ij if j > 0∑i

k=1 a
∗
ik if j = 0.

Here, δij denotes the Kronecker delta and a∗ij is the i, j entry of the matrix γA−1, where
A = (aij). The equivalence between (20) and the scheme defined by (A.1) is proven in [63].

Appendix B. The closest point projection onto a moving curve and its time
derivative.

The following paragraphs derive explicit expressions for the time derivative of the closest
point projection of a fixed point in space onto a moving curve. Such expressions are needed in
numerical implementations for the evaluation of (29) when the boundary evolution operator
γn,th is given by (24).

Consider a moving curve ct ∈ C := {s ∈ C2([0, 1],R2) | s′(θ) 6= 0 ∀θ ∈ [0, 1]} whose
velocity at any point y = ct(θ) ∈ image(ct) is given by vt(y) = ċt(θ). Let n̂t(y), t̂ t(y),
and κt(y) denote the unit normal vector, unit tangent vector, and signed curvature at y,

42

Table A.5: Coefficients βij for a s = 5-stage SDIRK scheme of order 4. (γ = 1/4)

i \ j 0 1 2 3 4

1 1

2 −1 2

3 −13
25

42
25

− 4
25

4 − 4
17

89
68
− 25

136
15
136

5 7
3
−37

12
−103

24
275
8
−85

3

respectively, and let πt and φt denote the closest point projection onto image(ct) and the
signed distance function on R2, respectively, as in Section 5. Let τ denote the arclength
parameter on image(ct). Henceforth, we employ the arclength parametrization and write
ct(τ) to denote the point on image(ct) with arclength parameter τ .

With respect to the arclength parametrization, the unit normal, unit tangent, and signed
curvature satisfy the following relations at any point y = ct(τ):

t̂ t(y) =
∂ct

∂τ
(τ),

∂t̂ t

∂τ
(y) = κt(y)n̂t(y),

∂n̂t

∂τ
(y) = −κt(y)t̂ t(y).

Here, for a given function f t : image(ct) → Rk, k ∈ {1, 2}, we are abusing notation by
writing

∂f t

∂τ
(y) :=

∂

∂τ

∣∣∣∣
t

f t(ct(τ))

for any y = ct(τ) ∈ image(ct). Likewise, we write

∂gt

∂t
(x) =

∂

∂t

∣∣∣∣
x

gt(x)

for a function gt : R2 → Rk, k ∈ {1, 2}.
The closest point projection satisfies

x− πt(x) = φt(x)n̂t(πt(x)) (B.1)

for any x ∈ R2 for which πt(x) is uniquely defined. Another identity that will be of use
momentarily concerns the normal velocity vtn(y) := vt(y) · n̂t(y). Namely,

∂vtn
∂τ

(y) = n̂t(y) · ∂v
t

∂τ
(y)− κt(y)t̂ t(y) · vt(y) (B.2)

for any y ∈ image(ct) by the product rule.

Proposition. Suppose {ct}t∈[0,T] ⊂ C is a family of curves such that the map

c : {(τ, t) : 0 ≤ τ ≤ length(image(ct)), 0 ≤ t ≤ T} → R2

(τ, t) 7→ ct(τ)

43

is of class C2. Let x ∈ R2 be a point for which πt(x) is uniquely defined and φt(x)κt(πt(x)) <
1 for every 0 ≤ t ≤ T . Then

∂πt

∂t
(x) = vtn(πt(x))n̂t(πt(x)) + σt(x)t̂ t(πt(x)) (B.3)

for every 0 ≤ t ≤ T , where

σt(x) =
φt(x)∂v

t
n

∂τ
(πt(x))

1− φt(x)κt(πt(x))
. (B.4)

Proof. Let τ̄ t(x) denote the arclength parameter along image(ct) assumed by πt(x); that is,

ct(τ̄ t(x)) = πt(x). (B.5)

Differentiating this relation with respect to time gives

vt(πt(x)) + t̂ t(πt(x))
∂τ̄ t

∂t
(x) =

∂πt

∂t
(x). (B.6)

On the other hand, relation (B.1) implies that(
x− ct(τ̄ t(x))

)
· t̂ t(ct(τ̄ t(x)) = 0 (B.7)

for every t. Using the fact that t̂ t(ct(τ̄ t(x)) = ∂ct

∂τ
(τ̄ t(x)) has unit length, the time derivative

of (B.7) reads

− vt(πt(x)) · t̂ t(πt(x))− ∂τ̄ t

∂t
+ φt(x)n̂t(πt(x)) ·

(
∂vt

∂τ
(πt(x)) + κt(πt(x))n̂t(πt(x))

∂τ̄ t

∂t

)
= 0.

(B.8)
Together, relations (B.6) and (B.8) provide enough information to solve for the normal and
tangential components of ∂πt

∂t
(x).

The normal component of ∂πt

∂t
(x) is obtained easily by dotting (B.6) with n̂t(πt(x)),

resulting in
∂πt

∂t
(x) · n̂t(πt(x)) = vtn(πt(x)).

To compute the tangential component σt(x) := ∂πt

∂t
s(x) · t̂ t(πt(x)), take the dot product

of (B.6) with t̂ t(πt(x)) and simplify (B.8) to obtain the following system of equations in two
unknowns σt(x) and ∂τ̄ t

∂t
:

vt(πt(x)) · t̂(πt(x)) +
∂τ̄ t

∂t
(x) = σt(x)

−vt(πt(x)) · t̂(πt(x))− ∂τ̄ t

∂t
(x) + φt(x)n̂t(πt(x)) · ∂v

t

∂τ
(πt(x)) + κt(πt(x))φt(x)

∂τ̄ t

∂t
(x) = 0.

Solving this system and invoking (B.2) leads to (B.4).

Remark. The restriction φt(x)κt(πt(x)) < 1 in the preceding proposition is mild. In general,
φt(x)κt(πt(x)) ≤ 1 whenever πt(x) is uniquely defined. Indeed, since |x− ct(τ)|2 is minimal

44

at τ = τ̄ t(x), it follows that

0 ≤ ∂2

∂τ 2

∣∣∣∣
τ=τ̄ t(x)

|x− ct(τ)|2 = 2(1− φt(x)κt(πt(x))).

The assumption of strict inequality rules out degenerate cases in which ∂2

∂τ2

∣∣∣
τ=τ̄ t(x)

|x −
ct(τ)|2 = 0.

45

	Introduction
	Overview of the method
	Construction of the method in one spatial dimension

	A Model Moving Boundary Problem
	The Continuous Problem
	Equivalent Formulation of the Continuous Problem

	Discretization
	Spatial Discretization on Short Time Intervals
	Integration over Long Time Intervals
	Example: a Runge-Kutta Time-Integrator
	Overview of Error Estimates

	Universal Meshes
	Construction of an Exactly Conforming Mesh
	Alternative: Isoparametric Approximation of the Domain
	Example: A Complete Algorithm
	Exact vs. Approximate Map: Cost Considerations
	Error estimate for a universal mesh

	Numerical Examples
	The (Modified) One-Dimensional Stefan Problem with Prescribed Boundary Evolution
	The (Modified) Two-Dimensional Stefan Problem with Prescribed Boundary Evolution

	Conclusion
	Acknowledgments
	References
	Singly Diagonally Implicit Runge Kutta time integrators.
	The closest point projection onto a moving curve and its time derivative.

