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Abstract

We analyze finite element discretizations of scalar curvature in dimension N ≥ 2. Our
analysis focuses on piecewise polynomial interpolants of a smooth Riemannian metric g on a
simplicial triangulation of a polyhedral domain Ω ⊂ RN having maximum element diameter h.
We show that if such an interpolant gh has polynomial degree r ≥ 0 and possesses single-valued
tangential-tangential components on codimension-1 simplices, then it admits a natural notion
of (densitized) scalar curvature that converges in the H−2(Ω)-norm to the (densitized) scalar
curvature of g at a rate of O(hr+1) as h→ 0, provided that either N = 2 or r ≥ 1. As a special
case, our result implies the convergence in H−2(Ω) of the widely used “angle defect” approxima-
tion of Gaussian curvature on two-dimensional triangulations, without stringent assumptions on
the interpolated metric gh. We present numerical experiments that indicate that our analytical
estimates are sharp.

1 Introduction

Many partial differential equations that arise in mathematical physics and geometric analysis involve
the Riemann curvature tensor and its contractions. The scalar curvature R, which is obtained
from two contractions of the Riemann curvature tensor, is particularly important; it serves as the
integrand in the Einstein-Hilbert functional from general relativity, and it appears in the governing
equation for two-dimensional Ricci flow. To approximate solutions to PDEs involving the scalar
curvature, it is necessary to discretize the nonlinear differential operator that sends a Riemannian
metric tensor to its scalar curvature. The goal of this paper is to construct and analyze such
discretizations in arbitrary dimension N ≥ 2.

We are specifically interested in the setting where a smooth Riemannian metric tensor g on
a polyhedral domain Ω ⊂ RN is approximated by a piecewise polynomial Regge metric gh on a
simplicial triangulation T of Ω having maximum element diameter h. Here, a metric is called a
Regge metric on T if it is piecewise smooth and its tangential-tangential components are single-
valued on every codimension-1 simplex in T . When such a metric is piecewise polynomial, it belongs
to a finite element space called the Regge finite element space [11, 12, 21]. Regge metrics are not
classically differentiable, so our first task will be to assign meaning to the scalar curvature of gh. Our
definition, which is a natural generalization of one that is now well-established in dimension N = 2,
treats the scalar curvature of gh as a distribution and regards it as an approximation of the densitized
scalar curvature of g, i.e. the scalar curvature R times the volume form ω. For piecewise constant
Regge metrics, our definition reduces to the classical definition of the distributional densitized
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curvature on piecewise flat spaces [8, 23]. It is a linear combination of Dirac delta distributions
supported on (N − 2)-simplices S, weighted by the angle defect at S: 2π minus the sum of the
dihedral angles incident at S. For piecewise polynomial Regge metrics of higher degree, it includes
additional contributions involving the scalar curvature in the interior of each N -simplex and the
jump in the mean curvature across each (N − 1)-simplex.

We study the convergence of the distributional densitized scalar curvature of gh to the densitized
scalar curvature of g under refinement of the triangulation. We show in Theorem 4.1 that in the
H−2(Ω)-norm, this convergence takes place at a rate of O(hr+1) when gh is an optimal-order
interpolant of g that is piecewise polynomial of degree r ≥ 0, provided that either N = 2 or r ≥ 1.
Our numerical experiments in Section 5 suggest that these estimates are sharp in general.

To put this convergence result into context, let us summarize some existing convergence results
in the literature on finite element approximation of the scalar curvature. We first need to assemble
some notation.

Notation. In what follows, W s,p(Ω) denotes the Sobolev-Slobodeckij space of differentiability
index s ∈ [0,∞) and integrability index p ∈ [1,∞], and ∥ · ∥W s,p(Ω) and | · |W s,p(Ω) denote the
associated norm and semi-norm, which we always take with respect to the Euclidean metric. We
denote Lp(Ω) =W 0,p(Ω) and Hs(Ω) =W s,2(Ω). For k ∈ N, we denote H−k(Ω) = (Hk

0 (Ω))
′, where

Hk
0 (Ω) denotes the space of functions in Hk(Ω) whose derivatives of order 0 through k − 1 have

vanishing trace on ∂Ω, and the prime denotes the dual space. Occasionally we use weighted Lp and
H−k spaces associated with a Riemannian metric g, which we denote by Lp(Ω, g) and H−k(Ω, g);
see Section 4 and [16, Equation 4.1] for details.

If g is a smooth Riemannian metric and gh is a Regge metric, then R(g) denotes the scalar
curvature of g, (Rω)(g) denotes the densitized scalar curvature of g, (Rω)dist(gh) denotes the

distributional densitized scalar curvature of gh (defined below in Definition 3.1), and R
(q)
h (gh)

denotes the L2(Ω, gh)-projection of (Rω)dist(gh) onto the Lagrange finite element space of degree q.
We also use the terms optimal-order interpolant, canonical interpolant, and geodesic interpolant

below. The first of these is a catch-all term for any piecewise polynomial interpolant gh of g that
belongs to the Regge finite element space and enjoys error estimates of optimal order in W s,p(T )-
norms on N -simplices T ; see Definition 4.2. The canonical interpolant is a specific interpolant
(which is optimal-order) detailed in [21, Chapter 2]. The geodesic interpolant of g is the unique
piecewise constant Regge metric gh with the property that the length of every edge in T , as
measured by gh, agrees with the geodesic distance between the corresponding vertices in T , as
measured by g.

Summary of existing results. We can now summarize some existing results about the approx-
imation of g’s curvature by gh’s distributional curvature. Throughout what follows, the letter r
denotes the polynomial degree of gh.

1. Cheeger, Müller, and Schrader [8, Equation (5.7) and Theorem 5.1] proved that if r = 0 and
gh is the geodesic interpolant of g, then (Rω)dist(gh) converges to (Rω)(g) in the (setwise)
sense of measures at a rate of O(h) in dimension N = 2 and O(h1/2) in dimension N ≥ 3.

2. Gawlik [16, Theorem 4.1] proved that if r ≥ 1, N = 2, and gh is any optimal-order interpolant

of g, then R
(q)
h (gh) converges to R(g) at a rate of O(hr) in the H−1(Ω, g)-norm and at a rate of

O(hr−k−1) in the broken Hk(Ω)-norm, k = 0, 1, 2, . . . , r− 2, provided that q ≥ max{1, r− 2}.

3. Berchenko-Kogan and Gawlik [4, Corollary 6.2] proved that if r ≥ 1, N = 2, and gh is any
optimal-order interpolant of g, then (Rω)dist(gh) converges to (Rω)(g) at a rate of O(hr) in
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the norm ∥u∥V ′,h = supv∈V,v ̸=0⟨u, v⟩V ′,V /∥v∥V,h, where

V = {v ∈ H1
0 (Ω) | v|T ∈ H2(T ) ∀T ∈ T N} (1)

and ∥v∥V,h = |v|H1(Ω) +
(∑

T∈T N h2T |v|2H2(T )

)1/2
. Here, hT denotes the diameter of T , and

T N denotes the set of N -simplices in T .

4. Gopalakrishnan, Neunteufel, Schöberl, and Wardetzky [19, Theorem 6.5 and Corollary 6.6]

proved that if r ≥ 0, N = 2, and gh is the canonical interpolant of g, then R
(r+1)
h (gh) converges

to R(g) at a rate of O(hr+1) in the H−1(Ω, g)-norm and at a rate of O(hr−k) in the broken
Hk(Ω)-norm, k = 0, 1, 2, . . . , r − 1.

New results. As one can see from above, our analysis in this paper covers two important cases
that have not yet been addressed in the literature:

1. We prove a convergence result in the case where N ≥ 3 and r ≥ 1. This opens the door
to the use of piecewise polynomial Regge metrics to approximate scalar curvature in high
dimensions.

2. We prove a convergence result in the case where N = 2, r = 0, and gh is an arbitrary
optimal-order interpolant of g. This has been a longstanding gap in the literature on Gaussian
curvature approximation. Previous efforts to address the case where N = 2 and r = 0 have
relied on subtle properties of the geodesic interpolant [8] and the canonical interpolant [19].
Our results establish the validity of Gaussian curvature approximations involving the angle
defect without stringent assumptions on the interpolated metric tensor gh.

Note that our analysis predicts no convergence at all in the H−2(Ω)-norm when N ≥ 3 and r = 0.
Our numerical experiments suggest that this result is sharp for general optimal-order interpolants.
However, for the canonical interpolant, numerical experiments suggest that (Rω)dist(gh) converges
to (Rω)(g) in the H−2(Ω)-norm at a rate of O(h) when N ≥ 3 and r = 0. We intend to study this
superconvergence phenomenon exhibited by the canonical interpolant in future work.

Structure of the paper. Our strategy for proving convergence of (Rω)dist(gh) to (Rω)(g) con-
sists of two steps. First, in Sections 2-3, we study the evolution of (Rω)dist(gh) under deformations
of the metric, leading to an integral formula for the error (Rω)dist(gh)− (Rω)(g) which reads

⟨(Rω)dist(gh)− (Rω)(g), v⟩V ′,V =

∫ 1

0
bh(g̃(t);σ, v)− ah(g̃(t);σ, v) dt, ∀v ∈ V. (2)

Here, g̃(t) = (1 − t)g + tgh, σ = ∂
∂t g̃(t) = gh − g, V is the space defined in (1), and bh(g̃(t); ·, ·)

and ah(g̃(t); ·, ·) are certain metric-dependent bilinear forms. In Section 4, we use techniques from
finite element theory to estimate the right-hand side of (2), leading to Theorem 4.1.

The approach above is similar to the one used in dimension N = 2 in [4, 16, 19], but there are
a few important differences. First, we work with an integral formula for the error (Rω)dist(gh) −
(Rω)(g) rather than an integral formula for the curvature itself. Previous analyses in [4, 16, 19]
hinged on formulas of the latter type. Loosely speaking, in this paper we compute the evolution of
the error along a one-parameter family of Regge metrics starting at g and ending at gh, whereas
the papers [4, 16, 19] compute the evolution of the curvature along a pair of one-parameter families
of metrics: one family that starts at the Euclidean metric δ and ends at gh, and one that starts at
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δ and ends at g. The approach based on evolving the error appears to be better suited for proving
optimal error estimates.

Another key aspect of our analysis is our use of the H−2(Ω)-norm to measure the error. This
norm is weaker than the ones used in [4, 16, 19], and it appears to be more natural for measuring
the error in the curvature. For example, for piecewise constant Regge metrics in dimension N = 2,
we show that convergence of (Rω)dist(gh) to (Rω)(g) holds in the H−2(Ω)-norm for any optimal-
order interpolant of g, but numerical experiments suggest that it fails to hold in stronger norms
when gh is not the canonical interpolant of g. A key tool that we use to prove convergence in
H−2(Ω) is the near-equivalence of a certain pair of metric-dependent, mesh-dependent norms on
V ; see Proposition 4.5. This equivalence is similar to one that Walker [27, Theorems 4.1 and 4.3]
proved for an analogous family of mesh-dependent norms on triangulated surfaces.

Additional comments. The formula (2) is not only useful for the error analysis, but it is also
interesting in its own right. It has a differential counterpart (see Theorem 3.6) that reads

d

dt
⟨(Rω)dist(g̃(t)), v⟩V ′,V = bh(g̃(t);σ, v)− ah(g̃(t);σ, v), ∀v ∈ V, (3)

which mimics the formula

d

dt

∫
Ω
Rvω =

∫
Ω
(div div Sσ)vω −

∫
Ω
⟨G, σ⟩vω, ∀v ∈ V (4)

that holds for a family of smooth Riemannian metrics g(t) with densitized scalar curvature Rω and
Einstein tensor G = Ric−1

2Rg. Here, Sσ = σ−gTrσ, and div is the covariant divergence operator;
see below for more notational details.

The correspondence between (3) and (4) becomes even more transparent when one inspects the
formulas for bh and ah (see Theorem 3.6). The bilinear form bh(g̃; ·, ·) is (up to the appearance of
S) a non-Euclidean, N -dimensional generalization of a bilinear form that appears in the Hellan-
Herrmann-Johnson finite element method [1–3, 5–7, 9, 22]. It can be regarded as the integral
of div div Sσ against v, where div div is interpreted in a distributional sense. This link with the
Hellan-Herrmann-Johnson method has previously been noted and used in dimension N = 2 [4, 16,
19].

The bilinear form ah(g̃; ·, ·), which is only nonzero in dimension N ≥ 3, appears to play the role
of
∫
Ω⟨G, σ⟩vω, which is also only nonzero in dimension N ≥ 3. It gives rise to a natural way of

defining the Einstein tensor in a distributional sense for Regge metrics. We discuss this more in
Section 3.2. Among other things, we point out that the formula for ah contains a term involving
the jump in the trace-reversed second fundamental form across codimension-1 simplices; the same
quantity arises in studies of singular sources in general relativity, where it encodes the well-known
Israel junction conditions across a hypersurface on which stress-energy is concentrated [20].

There are a few other connections between our calculations and ones that appear in the physics
literature. The variation of the Gibbons-Hawking-York boundary term in general relativity [17, 28]
is one example. It has many parallels to our calculations in Section 2.2, and one can undoubtedly
find formulas like (6) in the literature after reconciling notations. We still give a full derivation
of such formulas, not only to familiarize the reader with our notation, but also to provide careful
derivations that refrain from discarding total derivatives (which integrate to zero on manifolds
without boundary, but not in general) and minimize the use of local coordinate calculations where
possible.
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2 Evolution of geometric quantities

In this section, we consider an N -dimensional manifold M equipped with a smooth Riemannian
metric g, and we study the evolution of various geometric quantities under deformations of g.

We adopt the following notation in this section. The Levi-Civita connection associated with g
is denoted ∇. If σ is a (p, q)-tensor field, then its covariant derivative is the (p, q + 1)-tensor field
∇σ, and its covariant derivative in the direction of a vector field X is the (p, q)-tensor field ∇Xσ.
Its trace Trσ is the contraction of σ along the first two indices, using g to raise or lower indices
as needed. We denote div σ = Tr∇σ and ∆σ = div∇σ. The g-inner product of two (p, q)-tensor
fields σ and ρ is denoted ⟨σ, ρ⟩.

The volume form associated with g is denoted ω. The Ricci tensor and the scalar curvature of g
are denoted Ric and R, respectively. When we wish to emphasize their dependence on g, we write
ω(g), Ric(g), R(g), etc.

If D is an embedded submanifold of M , then we denote by ωD the induced volume form on D.
If σ is a tensor field on M , then σ|D denotes the pullback of σ under the inclusion D ↪→M . Later
we will introduce some additional notation related to embedded submanifolds of codimension 1,
like the mean curvature H and second fundamental form II; see Section 2.2.

We denote the exterior derivative of a differential form α by dα. If α is a one-form, then α♯

denotes the vector field obtained by raising indices with g. If f is a scalar field, then we sometimes
interpret the one-form ∇f = df as the vector field (df)♯ without explicitly writing it.

Later, in Section 4, we will append a subscript g to many quantities like∇ and ⟨·, ·⟩ to emphasize
their dependence on g. In that section only, an absent subscript will generally signal that the
quantity in question is computed with respect to the Euclidean metric, which we denote by δ. We
say more about this notational shift in Section 4.

2.1 Evolution of the densitized scalar curvature

First we study the evolution of the densitized scalar curvature Rω under deformations of the metric.

Proposition 2.1. Let g(t) be a family of smooth Riemannian metrics with time derivative ∂
∂tg =: σ.

We have
∂

∂t
(Rω) = (div div Sσ)ω − ⟨G, σ⟩ω,

where G = Ric−1
2Rg denotes the Einstein tensor associated with g and

Sσ = σ − gTrσ.

Proof. We compute
∂

∂t
(Rω) = Ṙω +Rω̇

and invoke the well-known formulas [15, Lemma 2]

Ṙ = div div σ −∆Trσ − ⟨Ric, σ⟩

and [10, Equation 2.4]

ω̇ =
1

2
(Trσ)ω.

Since ∆Trσ = div div(gTrσ) and Trσ = ⟨g, σ⟩, the result follows.
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2.2 Evolution of the mean curvature

Next we study the evolution of the mean curvature H of a hypersurface F . We assume that the tan-
gent bundle of F is trivial, so that there exists a smooth, g-orthonormal frame field τ1, τ2, . . . , τN−1

on F . (If this is not the case, then one can simply fix a point p ∈ F and focus on a neighborhood of p
on which the tangent bundle is trivial.) We let n be the unit normal to F so that n, τ1, τ2, . . . , τN−1

forms a right-handed g-orthonormal frame (in the ambient manifold) at each point on F . If the
metric g varies smoothly in time, then we assume that the vectors n, τ1, τ2, . . . , τN−1 also vary
smoothly in time and remain g-orthonormal at all times.

We use the notation
II(X,Y ) = g(∇Xn, Y ) = −g(n,∇XY )

for the second fundamental form on F . Our sign convention is such that Tr II = H, and H is
positive for a sphere with an outward normal vector. We also let ∇F and divF denote the surface
gradient and surface divergence operators on F , which have the following meanings. For a scalar
field v,

∇F v = ∇v − n∇nv =

N−1∑
i=1

τi∇τiv,

and for a one-form α,

divF α = Tr (∇α|F ) =
N−1∑
i=1

(∇τiα)(τi).

Note that in the formula ∇F v = ∇v − n∇nv, we have regarded ∇v as a vector field rather than a
one-form. Recall that the surface divergence operator satisfies the identity∫

F
(divF α)ωF =

∫
∂F
α(νF )ω∂F +

∫
F
Hα(n)ωF , (5)

where νF is the outward unit normal to ∂F and H is the mean curvature of F .

Proposition 2.2. Let g(t) be a family of smooth Riemannian metrics with time derivative ∂
∂tg =: σ.

Let F be a time-independent hypersurface with mean curvature H and induced volume form ωF .
Then

∂

∂t
(HωF ) = −1

2

(〈
II, σ|F

〉
+ (div Sσ)(n) + divF (σ(n, ·))−Hσ(n, n)

)
ωF , (6)

where
II(X,Y ) = II(X,Y )−Hg(X,Y )

is the trace-reversed second fundamental form.

Remark 2.3. In dimension N = 2, the formula (6) simplifies considerably. Letting τ and n
denote the unit tangent and unit normal to F , we have ∇τn = Hτ , −∇ττ = Hn, and II(τ, τ) =
g(∇τn, τ)−Hg(τ, τ) = H −H = 0, so II vanishes. In addition,

divF (σ(n, ·))−Hσ(n, n) = ∇τ (σ(n, ·)) (τ)−Hσ(n, n)

= ∇τ (σ(n, τ))− σ(n,∇ττ)−Hσ(n, n)

= ∇τ (σ(n, τ)) .

Thus, in two dimensions,

∂

∂t
(HωF ) = −1

2
((div Sσ)(n) +∇τ (σ(n, τ)))ωF .
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To prove Proposition 2.2, we write

Ḣ = −
N−1∑
i=1

∂

∂t
g(n,∇τiτi) (7)

and use the following lemmas.

Lemma 2.4. For any time-dependent vector fields X and Y ,

∂

∂t
∇YX = ∇ẎX +∇Y Ẋ +

1

2
((∇Xσ)Y + (∇Y σ)X − (∇σ)(X,Y ))♯ ,

where (∇σ)(X,Y ) denotes the one-form Z 7→ (∇Zσ)(X,Y ), and (∇Xσ)Y denotes the one-form
Z 7→ (∇Xσ)(Y,Z).

Proof. In coordinates,

(∇YX)ℓ = Y j ∂X
ℓ

∂xj
+ Γℓ

ijY
jXi,

where Γℓ
ij denote the Christoffel symbols of the second kind associated with g. Thus,

∂

∂t
(∇YX)ℓ = Ẏ j ∂X

ℓ

∂xj
+ Γℓ

ij Ẏ
jXi + Y j ∂Ẋ

ℓ

∂xj
+ Γℓ

ijY
jẊi + Γ̇ℓ

ijY
jXi

= (∇ẎX)ℓ + (∇Y Ẋ)ℓ + Γ̇ℓ
ijY

jXi.

Next, we recall the following formula for the rate of change of the Christoffel symbols under a
metric deformation [10, Equation 2.23]:

Γ̇ℓ
ij =

1

2
gℓm ((∇iσ)jm + (∇jσ)im − (∇mσ)ij) .

It follows that

Γ̇ℓ
ijY

jXi =
1

2
gℓm

(
(∇Xσ)jmY

j + (∇Y σ)imX
i − (∇mσ)ijY

jXi
)

=
1

2
[((∇Xσ)Y + (∇Y σ)X − (∇σ)(X,Y ))]ℓ .

Hence,

∂

∂t
(∇YX)ℓ = (∇ẎX)ℓ + (∇Y Ẋ)ℓ +

1

2
((∇Xσ)Y + (∇Y σ)X − (∇σ)(X,Y ))ℓ .

Lemma 2.5. For any time-dependent vector field X,

∂

∂t
g(n,X) =

1

2
σ(n, n)g(n,X) + g(n, Ẋ).

Proof. Writing X = ng(n,X) +
∑N−1

i=1 τig(τi, X), we compute

∂

∂t
g(n,X) = σ(n,X) + g(ṅ,X) + g(n, Ẋ)

= σ(n, n)g(n,X) +
N−1∑
i=1

σ(n, τi)g(τi, X) + g(ṅ, n)g(n,X) +
N−1∑
i=1

g(ṅ, τi)g(τi, X) + g(n, Ẋ)

= (σ(n, n) + g(ṅ, n)) g(n,X) +

N−1∑
i=1

(σ(n, τi) + g(ṅ, τi)) g(τi, X) + g(n, Ẋ).
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For each i = 1, 2, . . . , N − 1, we have

0 =
∂

∂t
g(n, τi) = σ(n, τi) + g(ṅ, τi) + g(n, τ̇i)

= σ(n, τi) + g(ṅ, τi)

since τ̇i is g-orthogonal to n. Likewise,

0 =
∂

∂t
g(n, n) = σ(n, n) + 2g(n, ṅ),

so the result follows.

We are now ready to compute the time derivative of the mean curvature H. By Lemma 2.5, we
have

Ḣ = −
N−1∑
i=1

∂

∂t
g(n,∇τiτi)

= −
N−1∑
i=1

[
1

2
σ(n, n)g(n,∇τiτi) + g

(
n,

∂

∂t
∇τiτi

)]

=
1

2
Hσ(n, n)−

N−1∑
i=1

g

(
n,

∂

∂t
∇τiτi

)
. (8)

Using Lemma 2.4 and the symmetry of the second fundamental form, we can write the second term
as

g

(
n,

∂

∂t
∇τiτi

)
= g(n,∇τ̇iτi) + g(n,∇τi τ̇i) + (∇τiσ)(n, τi)−

1

2
(∇nσ)(τi, τi)

= 2g(n,∇τ̇iτi) + (∇τiσ)(n, τi)−
1

2
(∇nσ)(τi, τi).

The first term above, when summed over i, can be simplified as follows. We write τ̇i =
∑N−1

j=1 τjg(τj , τ̇i)
and use the linearity of ∇XY in X to compute

2
N−1∑
i=1

g(n,∇τ̇iτi) = 2

N−1∑
i=1

N−1∑
j=1

g(n,∇τjτi)g(τj , τ̇i)

=

N−1∑
i=1

N−1∑
j=1

g(n,∇τjτi) (g(τj , τ̇i) + g(τ̇j , τi))

= −
N−1∑
i=1

N−1∑
j=1

g(n,∇τjτi)σ(τj , τi)

= ⟨II, σ|F ⟩.

Above, we used the symmetry of the second fundamental form to pass from the first line to the
second, and we used the identity

0 =
∂

∂t
g(τj , τi) = σ(τj , τi) + g(τj , τ̇i) + g(τ̇j , τi)
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to pass from the second line to the third. Inserting these results into (8), we get

Ḣ =
1

2
Hσ(n, n)− ⟨II, σ|F ⟩+

N−1∑
i=1

[
1

2
(∇nσ)(τi, τi)− (∇τiσ)(n, τi)

]
. (9)

Lemma 2.6. We have

N−1∑
i=1

[
1

2
(∇nσ)(τi, τi)− (∇τiσ)(n, τi)

]
=

1

2
(⟨II, σ|F ⟩ − (div Sσ)(n)− divF (σ(n, ·))) . (10)

Proof. The identity 0 = ∇τi (g(n, n)) = 2g(n,∇τin) shows that ∇τin is in the span of {τj}N−1
j=1 , so

the first term on the right-hand side of (10) satisfies

⟨II, σ|F ⟩ =
N−1∑
i=1

N−1∑
j=1

σ(τj , τi)g(τj ,∇τin)

=
N−1∑
i=1

σ(∇τin, τi). (11)

The second term on the right-hand side of (10) can be computed as follows. Recalling that Sσ =
σ − gTrσ, we have

(div Sσ)(n) = ∇n(Sσ)(n, n) +
N−1∑
i=1

∇τi(Sσ)(n, τi)

= (∇nσ)(n, n)−∇n(gTrσ)(n, n) +

N−1∑
i=1

[(∇τiσ)(n, τi)−∇τi(gTrσ)(n, τi)]

= (∇nσ)(n, n)− g(n, n)∇nTrσ +
N−1∑
i=1

[(∇τiσ)(n, τi)− g(n, τi)∇τi Trσ]

= (∇nσ)(n, n)−∇nTrσ +
N−1∑
i=1

(∇τiσ)(n, τi).

Since the trace commutes with covariant differentiation,

∇nTrσ = Tr∇nσ = (∇nσ)(n, n) +
N−1∑
i=1

(∇nσ)(τi, τi).

Thus,

(div Sσ)(n) =
N−1∑
i=1

[(∇τiσ)(n, τi)− (∇nσ)(τi, τi)] . (12)

The third term on the right-hand side of (10) is given by

divF (σ(n, ·)) =
N−1∑
i=1

∇τi (σ(n, ·)) (τi)

=

N−1∑
i=1

[∇τi (σ(n, τi))− σ(n,∇τiτi)] . (13)
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Combining (11), (12), and (13), we see that

1

2
(⟨II, σ|F ⟩ − (div Sσ)(n)− divF (σ(n, ·)))

=
1

2

N−1∑
i=1

[σ(∇τin, τi)− (∇τiσ)(n, τi) + (∇nσ)(τi, τi)−∇τi (σ(n, τi)) + σ(n,∇τiτi)]

=
1

2

N−1∑
i=1

[(∇nσ)(τi, τi)− 2(∇τiσ)(n, τi)] .

Combining Lemma 2.6 with (9), we get

Ḣ =
1

2
(−⟨II, σ|F ⟩ − (div Sσ)(n)− divF (σ(n, ·)) +Hσ(n, n)) . (14)

Proposition 2.2 now follows from the identities

∂

∂t
(HωF ) = ḢωF +Hω̇F = ḢωF +

1

2
H Tr (σ|F )ωF

and
⟨II, σ|F ⟩ −H Tr (σ|F ) = ⟨II, σ|F ⟩.

2.3 Evolution of angles

Next we study the evolution of angles under deformations of the metric.

Lemma 2.7. Let g(t) be a family of smooth Riemannian metrics with time derivative ∂
∂tg =: σ.

Let (n̄(t), τ̄(t)) be a pair of g(t)-orthonormal vectors, and let (n(t), τ(t)) be another pair of g(t)-
orthonormal vectors lying in the span of (n̄(t), τ̄(t)). Let θ(t) be the angle for which

τ = τ̄ cos θ + n̄ sin θ,

n = −τ̄ sin θ + n̄ cos θ.

Assume that these vectors vary smoothly in time, and assume that n(t) (respectively, n̄(t)) is at all
times g(t)-orthogonal to a time-independent hypersurface F (respectively, F̄ ). Then, at all times
for which θ ∈ (0, π), we have

∂

∂t
θ =

1

2
σ(n, τ)− 1

2
σ(n̄, τ̄). (15)

Proof. Differentiating the relation cos θ = g(n̄, n) yields

−θ̇ sin θ = ∂

∂t
(g(n̄, n)) .

In particular, at any time s, we can write

−θ̇(s) sin θ(s) = ∂

∂t

∣∣∣∣
t=s

(g(t)(n̄(t), n(s))) +
∂

∂t

∣∣∣∣
t=s

(g(t)(n̄(s), n(t)))− σ(s)(n̄(s), n(s)).

10



Using Lemma 2.5 and suppressing the evaluations at t = s, we get

−θ̇ sin θ = 1

2
σ(n̄, n̄)g(n̄, n) +

1

2
σ(n, n)g(n, n̄)− σ(n̄, n)

=
1

2
σ(n̄, n̄ cos θ − n) +

1

2
σ(n cos θ − n̄, n)

=
1

2
σ(n̄, τ̄ sin θ) +

1

2
σ(−τ sin θ, n).

If θ ∈ (0, π) at time t = s, then we can divide by sin θ to get (15).

3 Distributional densitized scalar curvature

Let T be a simplicial triangulation of a polyhedral domain Ω ⊂ RN . We use T k to denote the
set of all k-simplices in T . We also use T̊ k to denote the subset of T k consisting of k-simplices
that are not contained in the boundary of Ω. We call such simplices interior simplices. We call
(N − 1)-simplices faces.

Let g be a Regge metric on T . Recall that this means that g|T is a smooth Riemannian metric

on each T ∈ T N , and the induced metric g|F is single-valued on each F ∈ T̊ N−1 (and consequently
the induced metric is single-valued on all lower-dimensional simplices in T ).

On each T ∈ T N , we denote by RT the scalar curvature of g|T . On an interior face F ∈ T̊ N−1

that lies on the boundary of two N -simplices T+ and T−, the second fundamental form on F , as
measured by g|T+ , generally differs from that measured by g|T− . We denote by JIIKF the jump in
the second fundamental form across F . More precisely,

JIIKF (X,Y ) = g|T+ (∇Xn
+, Y ) + g|T− (∇Xn

−, Y )

for any vectors X,Y tangent to F , where n± points outward from T±, has unit length with respect
to g|T± , and is g|T±-orthogonal to F . We adopt similar notation for the jumps in other quantities
across F . For instance, JHKF denotes the jump in the mean curvature across F . We sometimes
drop the subscript F when there is no danger of confusion. If F is contained in ∂Ω, then we define
the jump in a scalar field v across F to be simply JvKF = v|F .

On each S ∈ T̊ N−2, the angle defect along S is

ΘS = 2π −
∑

T∈T N

T⊃S

θST ,

where θST denotes the dihedral angle formed by the two faces of T that contain S, as measured by
g|T . Generally this angle may vary along S. If F+ and F− are the two faces of T that contain S,
and if n± denotes the unit normal to F± with respect to g|T pointing outward from T , then

cos θST = − g|T (n+, n−).

Let
V = {v ∈ H1

0 (Ω) | ∀T ∈ T N , v|T ∈ H2(T )}.
Note that if v ∈ V , then v admits a single-valued trace on every simplex in T of dimension ≥ N−3.

Definition 3.1. Let g be a Regge metric. The distributional densitized scalar curvature of g is the
linear functional (Rω)dist(g) ∈ V ′ defined by

⟨(Rω)dist(g), v⟩V ′,V =
∑

T∈T N

∫
T
RT vωT + 2

∑
F∈T̊ N−1

∫
F
JHKF vωF + 2

∑
S∈T̊ N−2

∫
S
ΘSvωS , ∀v ∈ V.

(16)
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This definition generalizes Definition 3.1 of [4], where the distributional curvature two-form (i.e.
the Gaussian curvature times the volume form) is defined for Regge metrics in dimension N = 2.
Note that the factors of 2 appearing in all but the first term in (16) are consistent with the fact
that in dimension N = 2, the scalar curvature R is twice the Gaussian curvature.

One can heuristically motivate Definition 3.1 in much the same way that one motivates its
two-dimensional counterpart. When g is piecewise constant, Definition 3.1 recovers the classical
notion [23] that the distributional densitized scalar curvature is a linear combination of Dirac delta
distributions supported on (N − 2)-simplices, with weights given by angle defects. When g is not
piecewise constant, additional terms appear which account for the nonzero (classically defined)
curvature of g in the interior of each N -simplex T and the jump in the mean curvature across each
interior face F . The jump in the mean curvature across F can be understood by recalling that the
scalar curvature R at a point p ∈ F can be expressed as (two times) a sum of sectional curvatures
of N(N − 1)/2 tangent planes that are mutually g-orthogonal at p, (N − 1)(N − 2)/2 of which
are tangent to F at p and N − 1 of which are g-orthogonal to F at p. The sectional curvatures
corresponding to planes tangent to F are nonsingular, owing to the tangential-tangential continuity
of g. The remaining N − 1 sectional curvatures are singular, and by considering an N -dimensional
region that encloses a portion of F and has small thickness in the direction that is g-orthogonal of F ,
one can use the Gauss-Bonnet theorem (along two-dimensional slices) to approximate the (volume-
)integrated sum of these sectional curvatures by the (surface-)integrated jump in the mean curvature
across F . (In this calculation, one must bear in mind that sectional curvatures and Gaussian
curvatures are related via the Gauss-Codazzi equations.) See the discussion after Definition 3.1
in [4], as well as [26], for more insight in dimension N = 2. See also [13] for a justification of
Definition 3.1 in the case where g is piecewise constant and N ≥ 2.

In the sequel, we will consistently use the letters T , F , and S to refer to simplices of dimension
N , N − 1, and N − 2, respectively. We will therefore write

∑
T ,
∑

F , and
∑

S in place of
∑

T∈T N ,∑
F∈T N−1 , and

∑
S∈T N−2 , respectively. When we wish to sum over interior simplices of a given

dimension, we put a ring on top of the summation symbol. Thus, for example,
∑̊

F is shorthand
for
∑

F∈T̊ N−1 .

3.1 Evolution of the distributional scalar curvature

We are interested in how (16) changes under deformations of the metric. To this end, consider a
one-parameter family of Regge metrics g(t) with time derivative

σ =
∂

∂t
g.

Our goal will be to compute
d

dt
⟨(Rω)dist(g(t)), v⟩V ′,V

with v ∈ V arbitrary.
According to Propositions 2.1 and 2.2, the derivatives of the first two terms on the right-hand

side of (16) satisfy
d

dt

∫
T
RT vωT =

∫
T
(div div Sσ − ⟨G, σ⟩) vωT

and

2
d

dt

∫
F
JHKF vωF = −

∫
F

q〈
II, σ|F

〉
+ (div Sσ)(n) + divF (σ(n, ·))−Hσ(n, n)

y
vωF . (17)

For the third term on the right-hand side of (16), we use the following lemma.
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Lemma 3.2. Along any interior (N − 2)-simplex S, we have

∂

∂t
(ΘSωS) =

1

2

(∑
F⊃S

Jσ(n, τ)KF +ΘS Tr(σ|S)

)
ωS ,

where the sum is over all (N−1)-simplices F that contain S, n is the unit normal to F with respect
to g, and τ is the unit vector with respect to g that points into F from S and is g-orthogonal to
both S and n. Here, our convention is that if F is shared by two N -simplices T+ and T−, then

Jσ(n, τ)KF = σ+(n+, τ) + σ−(n−, τ),

where σ± = σ|T± and n± points outward from T±.

Remark 3.3. Note that n generally differs on either side of F , whereas τ does not, because g has
single-valued tangential-tangential components along F .

Proof. We compute

Θ̇S = −
∑
T⊃S

θ̇ST

and use Lemma 2.7 to differentiate each angle θST . The resulting expression for Θ̇S involves
differences between σ(n, τ) evaluated on consecutive pairs of faces F emanating from S. This sum
can be rearranged to give

Θ̇S =
1

2

∑
F⊃S

Jσ(n, τ)KF . (18)

We thus get

∂

∂t
(ΘSωS) = Θ̇SωS +ΘSω̇S

=
1

2

∑
F⊃S

Jσ(n, τ)KFωS +
1

2
ΘS Tr (σ|S)ωS .

It follows from the above lemma that

2
d

dt

∫
S
ΘSvωS =

∫
S

∑
F⊃S

Jσ(n, τ)KF vωS +

∫
S
ΘS Tr(σ|S)vωS

=

∫
S

∑
F⊃S

Jσ(n, τ)KF vωS +

∫
S
⟨ΘSg|S , σ|S⟩ vωS .

Collecting our results, we obtain

d

dt
⟨(Rω)dist(g(t)), v⟩V ′,V =

∑
T

∫
T
(div div Sσ)vωT

−
∑̊
F

∫
F

J(div Sσ)(n) + divF (σ(n, ·))−Hσ(n, n)KF vωF +
∑̊
S

∫
S

∑
F⊃S

Jσ(n, τ)KF vωS (19)

−
∑
T

∫
T
⟨G, σ⟩vωT −

∑̊
F

∫
F

〈
JIIKF , σ|F

〉
vωF +

∑̊
S

∫
S
⟨ΘSg|S , σ|S⟩ vωS .

We will now use integration by parts to rewrite the first three terms in a way that involves no
derivatives of σ.
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Lemma 3.4. For any v ∈ V , we have∑
T

∫
T
(div div Sσ)vωT −

∑̊
F

∫
F

J(div Sσ)(n) + divF (σ(n, ·))−Hσ(n, n)KF vωF

+
∑̊
S

∫
S

∑
F⊃S

Jσ(n, τ)KF vωS =
∑
T

∫
T
⟨Sσ,∇∇v⟩ω −

∑
F

∫
F
Sσ(n, n)J∇nvKωF .

Proof. We have∑
T

∫
T
⟨Sσ,∇∇v⟩ω −

∑
F

∫
F
Sσ(n, n)J∇nvKωF (20)

=
∑
T

(∫
T
⟨Sσ,∇∇v⟩ω −

∫
∂T

Sσ(n, n)∇nv ω∂T

)
=
∑
T

(∫
∂T

Sσ(n,∇v)ω∂T −
∫
T
(div Sσ)(∇v)ω −

∫
∂T

Sσ(n, n)∇nv ω∂T

)
=
∑
T

(∫
∂T

Sσ(n,∇v)ω∂T −
∫
∂T

(div Sσ)(n)vω∂T +

∫
T
(div div Sσ)vω

−
∫
∂T

Sσ(n, n)∇nv ω∂T

)
. (21)

Note that here we are regarding ∇v as a vector field rather than a one-form. On each N -simplex
T , we can write

∫
∂T Sσ(n,∇v)ω∂T −

∫
∂T Sσ(n, n)∇nv ω∂T as a sum of integrals over faces F ⊂ ∂T :∫

∂T
Sσ(n,∇v)ω∂T −

∫
∂T

Sσ(n, n)∇nv ω∂T =
∑

F⊂∂T

∫
F
Sσ(n,∇v − n∇nv)ωF

=
∑

F⊂∂T

∫
F
Sσ(n,∇F v)ωF

=
∑

F⊂∂T

∫
F
σ(n,∇F v)ωF .

In the last line above, we used the fact that ∇F v is g-orthogonal to n, so

Sσ(n,∇F v) = σ(n,∇F v)− g(n,∇F v) Trσ = σ(n,∇F v).

Each integral over F can be integrated by parts as follows. We have

σ(n,∇F v) = divF (σ(n, ·)v)− divF (σ(n, ·)) v,

so the identity (5) applied to α = σ(n, ·)v implies that∫
F
σ(n,∇F v)ωF =

∫
∂F
σ(n, νF )vω∂F −

∫
F
(divF (σ(n, ·))−Hσ(n, n)) vωF .

Now we insert this result into (21) to get∑
T

∫
T
⟨Sσ,∇∇v⟩ω −

∑
F

∫
F
Sσ(n, n)J∇nvKωF

=
∑
T

( ∑
F⊂∂T

∫
∂F
σ(n, νF )vω∂F −

∑
F⊂∂T

∫
F
(divF (σ(n, ·))−Hσ(n, n)) vωF

−
∫
∂T

(div Sσ)(n)vω∂T +

∫
T
(div div Sσ)vω

)
.

14



The first term can be re-expressed as a sum over interior (N − 2)-simplices S using our notation
from Lemma 3.2, and the next two terms can be re-expressed in terms of jumps across interior
faces F . (Integrals over (N − 2)-simplices S ⊂ ∂Ω and (N − 1)-simplices F ⊂ ∂Ω vanish because
v = 0 on ∂Ω.) The result is∑

T

∫
T
⟨Sσ,∇∇v⟩ω −

∑
F

∫
F
Sσ(n, n)J∇nvKωF =

∑̊
S

∫
S

∑
F⊃S

Jσ(n, τ)KF vωS

−
∑̊
F

∫
F

JdivF (σ(n, ·))−Hσ(n, n) + (div Sσ)(n)K vωF +
∑
T

∫
T
(div div Sσ)vω.

Remark 3.5. Many of the above calculations are similar to the ones in [4, Proposition 4.2], except
that here we are in dimension N rather than 2.

We can now state the main result of this subsection.

Theorem 3.6. Let g(t) be a family of Regge metrics with time derivative ∂
∂tg =: σ. For every

v ∈ V , we have
d

dt
⟨(Rω)dist(g(t)), v⟩V ′,V = bh(g;σ, v)− ah(g;σ, v), (22)

where

bh(g;σ, v) =
∑
T

∫
T
⟨Sσ,∇∇v⟩ω −

∑
F

∫
F
Sσ(n, n)J∇nvKFωF ,

ah(g;σ, v) =
∑
T

∫
T
⟨G, σ⟩vωT +

∑̊
F

∫
F

〈
JIIKF , σ|F

〉
vωF −

∑̊
S

∫
S
⟨ΘSg|S , σ|S⟩ vωS .

Proof. Combine (19) with Lemma 3.4.

3.2 Distributional densitized Einstein tensor

We now pause to make a few remarks about the bilinear forms ah(g; ·, ·) and bh(g; ·, ·) appearing
in Theorem 3.6. These remarks will play no role in our analysis, but they help to elucidate the
content of Theorem 3.6. The reader can safely skip ahead to Section 4 if desired.

Numerical analysts will likely recognize the bilinear form bh(g; ·, ·) appearing in Theorem 3.6. As
we mentioned in Section 1, it is (up to the appearance of S) a non-Euclidean, N -dimensional gener-
alization of a bilinear form that appears in the Hellan-Herrmann-Johnson finite element method [1–
3, 5–7, 9, 22]. It can be regarded as the integral of div div Sσ against v, where div div is interpreted
in a distributional sense.

The bilinear form ah(g; ·, ·) can be understood by comparing Theorem 3.6 with Proposition 2.1,
which, when integrated against a continuous function v, states that for a family of smooth Rieman-
nian metrics g(t) with scalar curvature R,

d

dt

∫
Ω
Rvω =

∫
Ω
(div div Sσ)vω −

∫
Ω
⟨G, σ⟩vω, (23)

where σ = ∂
∂tg and G = Ric−1

2Rg is the Einstein tensor associated with g. A comparison of (23)
with (22) suggests that for a Regge metric g, the bilinear form ah(g;σ, v) should be regarded as a
distributional counterpart of

∫
Ω⟨G, σ⟩vω.
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This motivates the following definition. Fix a number s > 1, and let Σ denote the space of
square-integrable symmetric (0, 2)-tensor fields σ with the following properties: the restriction of
σ to each T ∈ T N belongs to Hs(T ), and the tangential-tangential components of σ along any
face F ∈ T̊ N−1 are single-valued. Note that these conditions imply that the tangential-tangential
components of σ along any S ∈ T̊ N−2 are well-defined and single-valued as well.

Definition 3.7. Let g be a Regge metric. The distributional densitized Einstein tensor associated
with g is the linear functional (Gω)dist(g) ∈ Σ′ defined by

⟨(Gω)dist(g), σ⟩Σ′,Σ =
∑
T

∫
T
⟨G, σ⟩ωT +

∑̊
F

∫
F

〈
JIIKF , σ|F

〉
ωF −

∑̊
S

∫
S
⟨ΘSg|S , σ|S⟩ωS , ∀σ ∈ Σ.

Remark 3.8. In dimension N = 2, we have (Gω)dist(g) = 0 for any Regge metric g, because
G vanishes within each triangle, ĪI vanishes on each edge, and the restriction of σ to each vertex
vanishes.

Remark 3.9. The appearance of the trace-reversed second fundamental form II in Definition 3.7
is quite natural. The same quantity arises in studies of singular sources in general relativity, with
the jump in II encoding the well-known Israel junction conditions across a hypersurface on which
stress-energy is concentrated [20].

Remark 3.10. If we define a map (div div S)dist : Σ → V ′ by

⟨(div div S)distσ, v⟩V ′,V = bh(g;σ, v), ∀v ∈ V,

then, by construction, we have

d

dt

∣∣∣∣
t=0

⟨(Rω)dist(g + tσ), v⟩V ′,V = ⟨(div div S)distσ, v⟩V ′,V − ⟨(Gω)dist(g), vσ⟩Σ′,Σ

for every piecewise smooth σ ∈ Σ and every smooth function v with compact support in Ω. In
particular, suppose that Ω has no boundary (e.g., suppose that Ω is an N -dimensional cube and
we identify its opposing faces). Then bh(g;σ, 1) = 0 and

d

dt

∣∣∣∣
t=0

⟨(Rω)dist(g + tσ), 1⟩V ′,V = −⟨(Gω)dist(g), σ⟩Σ′,Σ

for every piecewise smooth σ ∈ Σ. This implies that a Regge metric g is a stationary point of
⟨(Rω)dist(g), 1⟩Σ′,Σ if its distributional densitized Einstein tensor vanishes: (Gω)dist(g) = 0.

The functional ⟨(Rω)dist(g), 1⟩Σ′,Σ is a counterpart of the Einstein-Hilbert functional
∫
ΩRω from

general relativity, whose stationary points are solutions to the (vacuum) Einstein field equations
G = 0. It reduces to the Regge action from Regge calculus when g is piecewise constant. That is,

⟨(Rω)dist(g), 1⟩Σ′,Σ = 2
∑̊
S

ΘSVS , if g is piecewise constant,

where VS =
∫
S ωS denotes the volume of S. If g varies with t and remains piecewise constant for

all t, then
d

dt
2
∑̊
S

ΘSVS = 2
∑̊
S

Θ̇SVS + 2
∑̊
S

ΘSV̇S ,
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and one checks that (on a domain without boundary)

2
∑̊
S

Θ̇SVS = bh(g;σ, 1) = 0

and

2
∑̊
S

ΘSV̇S = −ah(g;σ, 1) = −⟨(Gω)dist(g), σ⟩Σ′,Σ,

where σ = ∂
∂tg. The fact that

∑̊
SΘ̇SVS = 0 for any piecewise constant Regge metric g (on a

domain without boundary) was proved in Regge’s classic paper [23] using very different techniques.

Remark 3.11. If g is a Regge metric and σ = gv for some smooth function v with compact support
in Ω, then:

1. On each N -simplex T , we have

⟨G, σ⟩ = ⟨G, g⟩v = (TrG)v = −
(
N − 2

2

)
Rv.

2. On either side of each interior (N − 1)-simplex F , we have:〈
II, σ|F

〉
= ⟨II, g|F ⟩ v − ⟨g|F , g|F ⟩Hv
= Hv − (N − 1)Hv

= −(N − 2)Hv.

3. On each interior (N − 2)-simplex S, we have

⟨ΘSg|S , σ|S⟩ = ΘSvTr(g|S) = (N − 2)ΘSv.

This shows that

⟨(Gω)dist(g), gv⟩Σ′,Σ = −
(
N − 2

2

)(∑
T

∫
T
RT vωT + 2

∑̊
F

∫
F
JHKF vωF + 2

∑̊
S

∫
S
ΘSvωS

)

= −
(
N − 2

2

)
⟨(Rω)dist(g), v⟩V ′,V

for every smooth function v with compact support in Ω. One can interpret this as saying that the
trace of (Gω)dist(g) is −

(
N−2
2

)
(Rω)dist(g).

Remark 3.12. If g is a piecewise constant Regge metric and σ ∈ Σ is piecewise constant, then

⟨(Gω)dist(g), σ⟩Σ′,Σ = −
∑̊
S

∫
S
ΘS Tr(σ|S)ωS .

If we linearize around the Euclidean metric g = δ, then we see from (18) that

d

dt

∣∣∣∣
t=0

⟨(Gω)dist(δ + tρ), σ⟩Σ′,Σ = −
∑̊
S

∫
S
Θ̇S Tr(σ|S)ωS

= −1

2

∑̊
S

∫
S

∑
F⊃S

Jρ(n, τ)KF Tr(σ|S)ωS
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for every piecewise constant ρ, σ ∈ Σ. (Note that there are no additional terms on the right-hand
side because ΘS = 0 at t = 0.) Hence, if Ω has no boundary, then

d2

dt2

∣∣∣∣
t=0

⟨(Rω)dist(δ + tσ), 1⟩V ′,V = − d

dt

∣∣∣∣
t=0

⟨(Gω)dist(δ + tσ), σ⟩Σ′,Σ

=
1

2

∑̊
S

∫
S

∑
F⊃S

Jσ(n, τ)KF Tr(σ|S)ωS

for every piecewise constant σ ∈ Σ. This is equivalent to Christiansen’s formula [12, Theorem 2
and Equations (25-26)] for the second variation of the Regge action around the Euclidean metric
in dimension N = 3. (There, the Regge action is taken to be 1

2⟨(Rω)dist(g), 1⟩V ′,V rather than
⟨(Rω)dist(g), 1⟩V ′,V .)

4 Convergence

In this section, we prove a convergence result for the distributional densitized scalar curvature in
the norm

∥u∥H−2(Ω) = sup
v∈H2

0 (Ω),
v ̸=0

⟨u, v⟩H−2(Ω),H2
0 (Ω)

∥v∥H2(Ω)
. (24)

Our convergence result will be applicable to a family {gh}h>0 of Regge metrics defined on a shape-
regular family {Th}h>0 of triangulations of Ω parametrized by h = maxT∈T N

h
hT , where hT =

diam(T ). Shape-regularity means that there exists a constant C0 independent of h such that

max
T∈T N

h

hT
ρT

≤ C0

for all h > 0, where ρT denotes the inradius of T .

Theorem 4.1. Let Ω ⊂ RN be a polyhedral domain equipped with a smooth Riemannian metric g.
Let {gh}h>0 be a family of Regge metrics defined on a shape-regular family {Th}h>0 of triangulations
of Ω. Assume that limh→0 ∥gh − g∥L∞(Ω) = 0 and C1 := suph>0maxT∈T N

h
∥gh∥W 1,∞(T ) < ∞. The

following statements hold:

(i) If N = 2, then there exist positive constants C and h0 such that

∥(Rω)dist(gh)− (Rω)(g)∥H−2(Ω) ≤ C

(
1 + max

T
h−1
T ∥gh − g∥L∞(T ) +max

T
|gh − g|W 1,∞(T )

)

×

(
∥gh − g∥2L2(Ω) +

∑
T

h2T |gh − g|2H1(T )

)1/2

(25)

for all h ≤ h0. The constants C and h0 depend on ∥g∥W 1,∞(Ω), ∥g−1∥L∞(Ω), C0, and C1.
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(ii) If N ≥ 3, assume additionally that C2 := suph>0maxT∈T N
h

|gh|W 2,∞(T ) <∞. Then there exist
positive constants C and h0 such that

∥(Rω)dist(gh)− (Rω)(g)∥H−2(Ω) ≤ C

(
1 + max

T
h−2
T ∥gh − g∥L∞(T ) +max

T
h−1
T |gh − g|W 1,∞(T )

)

×

(
∥gh − g∥2L2(Ω) +

∑
T

h2T |gh − g|2H1(T ) +
∑
T

h4T |gh − g|2H2(T )

)1/2

(26)

for all h ≤ h0. The constants C and h0 depend on N , ∥g∥W 1,∞(Ω), ∥g−1∥L∞(Ω), C0, C1, and
C2.

The above theorem leads immediately to error estimates of optimal order for piecewise poly-
nomial interpolants of g having degree r ≥ 0, provided that either N = 2 or r ≥ 1. To make this
statement precise, we introduce a definition. Recall that the Regge finite element space of degree
r ≥ 0 consists of symmetric (0, 2)-tensor fields on Ω that are piecewise polynomial of degree at
most r and possess single-valued tangential-tangential components on interior (N − 1)-simplices.

Definition 4.2. Let Ih be a map that sends smooth symmetric (0, 2)-tensor fields on Ω to the Regge
finite element space of degree r ≥ 0. We say that Ih is an optimal-order interpolation operator of
degree r if there exists a number m ∈ {0, 1, . . . , N} and a constant C3 = C3(N, r, hT /ρT , t, s) such
that for every p ∈ [1,∞], every s ∈ (m/p, r + 1], every t ∈ [0, s], and every symmetric (0, 2)-tensor
field g possessing W s,p(Ω)-regularity, Ihg exists (upon continuously extending Ih) and satisfies

|Ihg − g|W t,p(T ) ≤ C3h
s−t
T |g|W s,p(T ) (27)

for every T ∈ T N
h . We call the number m the codimension index of Ih. A Regge metric gh

is called an optimal-order interpolant of g having degree r and codimension index m if it is the
image of a Riemannian metric g under an optimal-order interpolation operator having degree r and
codimension index m.

An example of an optimal-order interpolation operator is the canonical interpolation operator
onto the degree-r Regge finite element space introduced in [21, Chapter 2]. Its degrees of freedom
involve integrals over simplices of codimension at most N − 1, so its action on a tensor field g is
well-defined so long as g admits traces on simplices of codimension at most N − 1, i.e. g possesses
W s,p(Ω)-regularity with s > (N − 1)/p. Correspondingly, its codimension index is m = N − 1.

Corollary 4.3. Let Ω, g, and {Th}h>0 be as in Theorem 4.1. Let {gh}h>0 be a family of optimal-
order interpolants of g having degree r ≥ 0 and codimension index m. If N ≥ 3, assume that r ≥ 1.
Then there exist positive constants C and h0 such that

∥(Rω)dist(gh)− (Rω)(g)∥H−2(Ω) ≤ C

(∑
T

h
p(r+1)
T |g|p

W r+1,p(T )

)1/p

for all h ≤ h0 and all p ∈ [2,∞] satisfying p > m
r+1 . (We interpret the right-hand side as

CmaxT h
r+1
T |g|W r+1,∞(T ) if p = ∞.) The constants C and h0 depend on the same quantities listed

in (i) (if N = 2) and (ii) (if N ≥ 3), as well as on Ω, r, and (if N ≥ 3) |g|W 2,∞(Ω).
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Remark 4.4. The corollary above continues to hold if we allow slightly more general interpolants
in Definition 4.2. For example, it holds if (27) is replaced by

|Ihg − g|W t,p(T ) ≤ C3h
s−t
T

∑
T ′:T ′∩T ̸=∅

|g|W s,p(T ′), (28)

where the sum is over all T ′ ∈ T N
h that share a subsimplex with T .

In what follows, we reuse the letter C to denote a positive constant that may change at each
occurrence and may depend on N , ∥g∥W 1,∞(Ω), ∥g−1∥L∞(Ω), C0, and C1. Beginning in Lemma 4.8,
we allow C to also depend on C2.

Our strategy for proving Theorem 4.1 will be to consider an evolving metric

g̃(t) = (1− t)g + tgh

with time derivative

σ =
∂

∂t
g̃(t) = gh − g.

Note that g̃(t), being piecewise smooth and tangential-tangential continuous, is a Regge metric for
all t ∈ [0, 1], and it happens to be a (globally) smooth Riemannian metric at t = 0. Since g̃(0) = g
and g̃(1) = gh, Theorem 3.6 implies that

⟨(Rω)dist(gh)− (Rω)(g), v⟩V ′,V =

∫ 1

0
bh(g̃(t);σ, v)− ah(g̃(t);σ, v) dt, ∀v ∈ V.

Thus, we can estimate (Rω)dist(gh) − (Rω)(g) by estimating the bilinear forms bh(g̃(t); ·, ·) and
ah(g̃(t); ·, ·).

To do this, we introduce some notation. Given any Regge metric g, we let ∇g and ∇ denote
the covariant derivatives with respect to g and δ, respectively. Similarly, we append a subscript
g to other operators like Tr, S, and div when they are taken with respect to g, and we omit the
subscript when they are taken with respect to δ. On the boundary of any N -simplex T , we let ng
and n denote the outward unit normal vectors with respect to g|T and δ, respectively. These two
vectors are related to one another in coordinates via

ng =
1√

nT g−1n
g−1n, (29)

where we are thinking of g as a matrix and n and ng as column vectors. We write ⟨·, ·⟩g for the
g-inner product of two tensor fields. If D is a submanifold of Ω on which the induced metric g|D
is well-defined, and if ρ is a tensor field on D, then we denote

∥ρ∥Lp(D,g) =

{(∫
D |ρ|pg ωD(g)

)1/p
, if 1 ≤ p <∞,

supD |ρ|g, if p = ∞,

where ωD(g) is the induced volume form on D and |ρ|g = ⟨ρ, ρ⟩1/2g . We abbreviate ∥ · ∥Lp(D) =
∥ · ∥Lp(D,δ) and | · | = | · |δ.

We introduce two metric-dependent, mesh-dependent norms. For v ∈ V , we set

∥v∥22,h,g =
∑
T

∥∇g∇gv∥2L2(T,g) +
∑
F

h−1
F ∥Jdv(ng)K∥2L2(F,g) .
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If σ is a symmetric (0, 2)-tensor field with the property that σ(ng, ng) is well-defined and single-
valued on every F ∈ T N−1

h , then we set

∥σ∥20,h,g =
∑
T

∥σ∥2L2(T,g) +
∑
F

hF ∥σ(ng, ng)∥2L2(F,g),

where hF is the Euclidean diameter of F . Note that the image under Sg of any symmetric (0, 2)-
tensor field possessing single-valued tangential-tangential components along faces automatically
possesses single-valued normal-normal components along faces, because

Sgσ(ng, ng) = σ(ng, ng)− g(ng, ng) Trg σ = −Trg (σ|F ) .

Now we return to the setting of Theorem 4.1 and the discussion thereafter: g is a smooth
Riemannian metric, gh is a Regge metric, g̃(t) = (1 − t)g + tgh, and σ = gh − g. We assume
throughout what follows that limh→0 ∥gh − g∥L∞(Ω) = 0 and suph>0maxT∈T N

h
∥gh∥W 1,∞(T ) < ∞.

These assumptions have some elementary consequences that we record here for reference (see [16]
for a derivation). For every h sufficiently small, every t ∈ [0, 1], and every vector w with unit
Euclidean length,

∥g̃∥L∞(Ω) + ∥g̃−1∥L∞(Ω) ≤ C, (30)

max
T

|g̃|W 1,∞(T ) ≤ C, (31)

C−1 ≤ inf
Ω
(wT g̃w) ≤ sup

Ω
(wT g̃w) ≤ C, (32)

where we are thinking of g̃ as a matrix and w as a column vector in the last line. Note that the
last line implies the existence of positive lower and upper bounds on wT g̃−1w as well:

C−1 ≤ inf
Ω
(wT g̃−1w) ≤ sup

Ω
(wT g̃−1w) ≤ C. (33)

In addition, the inequalities ∥g̃∥L∞(Ω) ≤ C and ∥g̃−1∥L∞(Ω) ≤ C imply that

C−1∥ρ∥Lp(D,g̃(t2)) ≤ ∥ρ∥Lp(D,g̃(t1)) ≤ C∥ρ∥Lp(D,g̃(t2)) (34)

and
C−1∥ρ∥Lp(D) ≤ ∥ρ∥Lp(D,g̃(t1)) ≤ C∥ρ∥Lp(D) (35)

for every t1, t2 ∈ [0, 1], every admissible submanifold D, every p ∈ [1,∞], every tensor field ρ having
finite Lp(D)-norm, and every h sufficiently small. We select h0 > 0 so that (30-35) hold for all
h ≤ h0, and we tacitly use these inequalities throughout our analysis.

We will show the following near-equivalence of the norms ∥ · ∥2,h,g̃ and ∥ · ∥2,h,g.

Proposition 4.5. For every v ∈ V , every h ≤ h0, and every t ∈ [0, 1],

∥v∥22,h,g̃ ≤ C

[
∥v∥22,h,g +

(
max
T

h−2
T ∥gh − g∥2L∞(T ) +max

T
|gh − g|2W 1,∞(T )

)
×
∑
T

(
∥dv∥2L2(T ) + h2T |dv|2H1(T )

)]
.

The proof of Proposition 4.5 relies on the following lemma.
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Lemma 4.6. Let g1 and g2 be two symmetric positive definite matrices, and let n be a unit vector.
Let

ngi =
1√

nT g−1
i n

g−1
i n, i = 1, 2.

Then there exists a constant c depending on |g1|, |g2|, |g−1
1 |, |g−1

2 | such that

|ng1 − ng2 | ≤ c|g1 − g2|.

Proof. Using the identity

1√
nT g−1

1 n
− 1√

nT g−1
2 n

=
nT (g−1

2 − g−1
1 )n

nT g−1
1 n

√
nT g−1

2 n+ nT g−1
2 n

√
nT g−1

1 n
, (36)

we can write

ng1 − ng2 =
nT (g−1

2 − g−1
1 )n

nT g−1
1 n

√
nT g−1

2 n+ nT g−1
2 n

√
nT g−1

1 n
g−1
1 n+

1√
nT g−1

2 n
(g−1

1 − g−1
2 )n.

Since g−1
1 − g−1

2 = g−1
1 (g2 − g1)g

−1
2 , the bound follows easily.

Notice that in view of (29), Lemma 4.6 implies that

∥ng̃ − ng∥L∞(F ) ≤ C∥g̃ − g∥L∞(F ) (37)

on either side of any face F .
Now we are ready to begin proving Proposition 4.5. Consider the term

∑
F h

−1
F

∥∥Jdv(ng̃)K∥∥2L2(F,g̃)

that appears in the definition of ∥v∥22,h,g̃. Notice that

dv(ng̃) = dv(ng) + dv(ng̃ − ng),

and we can use the bound (37) to estimate

∥dv(ng̃ − ng)∥L2(F,g̃) ≤ C∥dv(ng̃ − ng)∥L2(F )

≤ C∥dv∥L2(F )∥ng̃ − ng∥L∞(F )

≤ C∥dv∥L2(F )∥g̃ − g∥L∞(F )

≤ C∥dv∥L2(F )∥gh − g∥L∞(F )

on either side of F . Using the trace inequality

∥dv∥2L2(F ) ≤ C
(
h−1
T ∥dv∥2L2(T ) + hT |dv|2H1(T )

)
, F ⊂ T ∈ T N

h , (38)

it follows that∑
F

h−1
F ∥Jdv(ng̃)K∥2L2(F,g̃)

≤ C

(∑
F

h−1
F ∥Jdv(ng)K∥2L2(F,g) +

∑
T

h−1
T

(
h−1
T ∥dv∥2L2(T ) + hT |dv|2H1(T )

)
∥gh − g∥2L∞(T )

)

= C

(∑
F

h−1
F ∥Jdv(ng)K∥2L2(F,g) +

∑
T

(
h−2
T ∥gh − g∥2L∞(T )∥dv∥

2
L2(T ) + ∥gh − g∥2L∞(T )|dv|

2
H1(T )

))
,
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where we have used (34), (38), and the bound hT ≤ ChF , which follows from the shape-regularity
of Th.

Next, consider the term
∑

T ∥∇g̃∇g̃v∥2L2(T,g̃) that appears in the definition of ∥v∥22,h,g̃. Notice
that (

∇g̃∇g̃v
)
ij
= (∇g∇gv)ij + (Γk

ij − Γ̃k
ij)

∂v

∂xk
,

where Γk
ij and Γ̃k

ij are the Christoffel symbols of the second kind associated with g and g̃, respec-
tively. We have

∥Γk
ij − Γ̃k

ij∥L∞(T ) ≤ C∥g̃ − g∥W 1,∞(T ) ≤ C∥gh − g∥W 1,∞(T ),

so

∥∇g̃∇g̃v∥L2(T,g̃) ≤ C∥∇g̃∇g̃v∥L2(T )

≤ C
(
∥∇g∇gv∥L2(T ) + ∥gh − g∥W 1,∞(T )∥dv∥L2(T )

)
≤ C

(
∥∇g∇gv∥L2(T,g) + ∥gh − g∥W 1,∞(T )∥dv∥L2(T )

)
.

It follows that

∥v∥22,h,g̃ ≤ C

[
∥v∥22,h,g +

(
max
T

h−2
T ∥gh − g∥2L∞(T ) +max

T
|gh − g|2W 1,∞(T )

)
×
∑
T

(
∥dv∥2L2(T ) + h2T |dv|2H1(T )

)]
.

This completes the proof of Proposition 4.5.
Our next step will be to estimate the bilinear form bh(g̃; ·, ·).

Proposition 4.7. For every h ≤ h0, every t ∈ [0, 1], and every v ∈ H2
0 (Ω), we have (with

σ = gh − g)

|bh(g̃;σ, v)| ≤ C

(
∥gh − g∥2L2(Ω) +

∑
T

h2T |gh − g|2H1(T )

)1/2

×
(
1 + max

T
h−1
T ∥gh − g∥L∞(T ) +max

T
|gh − g|W 1,∞(T )

)
∥v∥H2(Ω).

Proof. In view of the definitions of ∥ · ∥0,h,g̃ and ∥ · ∥2,h,g̃, we have

|bh(g̃;σ, v)| ≤ ∥Sg̃σ∥0,h,g̃∥v∥2,h,g̃. (39)

Recalling that

∥Sg̃σ∥20,h,g̃ =
∑
T

∥Sg̃σ∥2L2(T,g̃) +
∑
F

hF ∥Sg̃σ(ng̃, ng̃)∥2L2(F,g̃),

we compute

⟨Sg̃σ, Sg̃σ⟩g̃ =
〈
σ − g̃⟨g̃, σ⟩g̃, σ − g̃⟨g̃, σ⟩g̃

〉
g̃

= ⟨σ, σ⟩g̃ − 2⟨g̃, σ⟩2g̃ + ⟨g̃, g̃⟩g̃⟨g̃, σ⟩2g̃
= ⟨σ, σ⟩g̃ + (N − 2)⟨g̃, σ⟩2g̃,
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which leads to the bound

∥Sg̃σ∥L2(T,g̃) ≤ C∥σ∥L2(T,g̃) ≤ C∥σ∥L2(T ).

Also, by the trace inequality,

∥Sg̃σ(ng̃, ng̃)∥2L2(∂T,g̃) ≤ C∥Sg̃σ∥2L2(∂T,g̃)

≤ C∥σ∥2L2(∂T )

≤ C
(
h−1
T ∥σ∥2L2(T ) + hT |σ|2H1(T )

)
.

(Here we are measuring the L2(∂T, g̃)-norm of the full tensor Sg̃σ rather than its restriction to the
tangent bundle of ∂T .) Thus,

∥Sg̃σ∥20,h,g̃ ≤ C

(
∥σ∥2L2(Ω) +

∑
T

h2T |σ|2H1(T )

)

= C

(
∥gh − g∥2L2(Ω) +

∑
T

h2T |gh − g|2H1(T )

)
. (40)

Consider now the term ∥v∥2,h,g̃ in (39). Proposition 4.5 implies that

∥v∥2,h,g̃ ≤ C

(
∥v∥2,h,g +

(
max
T

h−1
T ∥gh − g∥L∞(T ) +max

T
|gh − g|W 1,∞(T )

)
∥v∥H2(Ω)

)
since v ∈ H2

0 (Ω). Furthermore, since g is smooth and v ∈ H2
0 (Ω), we have Jdv(ng)K = 0 on

every interior face F and Jdv(ng)K = dv(ng) = 0 on every face F ⊂ ∂Ω. Thus, ∥v∥22,h,g =∑
T ∥∇g∇gv∥2L2(T,g) = ∥∇g∇gv∥2L2(Ω,g). Since

(∇g∇gv)ij = (∇∇v)ij − Γk
ij

∂v

∂xk
,

we see that
∥v∥2,h,g = ∥∇g∇gv∥L2(Ω) ≤ C(|v|H2(Ω) + |v|H1(Ω)) ≤ C∥v∥H2(Ω).

Thus,

∥v∥2,h,g̃ ≤ C

(
1 + max

T
h−1
T ∥gh − g∥L∞(T ) +max

T
|gh − g|W 1,∞(T )

)
∥v∥H2(Ω). (41)

Combining (39), (40), and (41) completes the proof.

At this point, we have finished proving part (i) of Theorem 4.1. Indeed, in dimension N = 2,
ah vanishes, so we can write∣∣⟨(Rω)dist(gh)− (Rω)(g), v⟩V ′,V

∣∣ ≤ ∫ 1

0
|bh(g̃(t);σ, v)| dt

and apply Proposition 4.7 to deduce (25).
To prove part (ii) of Theorem 4.1, we suppose thatN ≥ 3 and that suph>0maxT∈T N

h
|gh|W 2,∞(T ) <

∞, and we proceed as follows. Recall that

ah(g̃;σ, v) =
∑
T

∫
T
⟨G(g̃), σ⟩g̃vωT (g̃)+

∑̊
F

∫
F

〈
JII(g̃)KF , σ|F

〉
g̃
vωF (g̃)−

∑̊
S

∫
S
⟨ΘS(g̃)g̃|S , σ|S⟩g̃vωS(g̃),

(42)
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where have made all dependencies on the metric explicit in the notation. We will bound each of
the three terms above, beginning with the first. Throughout what follows, we continue to denote
σ = gh − g, and we let v be an arbitrary member of V .

Lemma 4.8. We have∣∣∣∣∣∑
T

∫
T
⟨G(g̃), σ⟩g̃ vωT (g̃)

∣∣∣∣∣ ≤ C∥gh − g∥L2(Ω)∥v∥L2(Ω).

Proof. Since we are now assuming that suph>0maxT∈T N
h

∥gh∥W 2,∞(T ) < ∞, the Einstein tensor

associated with g̃ satisfies
∥G(g̃)∥L∞(T ) ≤ C

for every h ≤ h0, every t ∈ [0, 1], and every T ∈ T N
h . It follows that∣∣∣∣∫

T
⟨G(g̃), σ⟩g̃ vωT (g̃)

∣∣∣∣ ≤ ∥G(g̃)∥L∞(T,g̃)∥σ∥L2(T,g̃)∥v∥L2(T,g̃)

≤ C∥G(g̃)∥L∞(T )∥σ∥L2(T )∥v∥L2(T )

≤ C∥σ∥L2(T )∥v∥L2(T )

= C∥gh − g∥L2(T )∥v∥L2(T ).

Summing over all T ∈ T N
h completes the proof.

Lemma 4.9. We have∣∣∣∣∣∑̊
F

∫
F

〈
JII(g̃)KF , σ|F

〉
g̃
vωF (g̃)

∣∣∣∣∣ ≤ Cmax
T

(
h−1
T ∥gh − g∥W 1,∞(T )

)
×

(∑
T

∥gh − g∥2L2(T ) + h2T |gh − g|2H1(T )

)1/2(∑
T

∥v∥2L2(T ) + h2T |v|2H1(T )

)1/2

.

Proof. Consider an interior (N − 1)-simplex F . By applying a Euclidean rotation and translation
to the coordinates, we may assume without loss of generality that F lies in the plane xN = 0. In
these coordinates, the second fundamental form associated with g̃ is given by

IIij(g̃) = −g̃(ng̃,∇g̃,eiej)

= −g̃(ng̃, Γ̃k
ijek)

= −nℓg̃ g̃ℓkΓ̃
k
ij , i, j = 1, 2, . . . , N − 1,

where e1, e2, . . . , eN are the Euclidean coordinate basis vectors. Since ng̃ = g̃−1n/
√
nT g̃−1n and n

points in the xN direction, we get

IIij(g̃) = − 1√
nT g̃−1n

Γ̃N
ij .

The jump in this quantity across F can be computed using the identity JabK = JaK{b} + {a}JbK,
where {·} denotes the average across F , giving

−JIIij(g̃)K =

t
1√

nT g̃−1n

|{
Γ̃N
ij

}
+

{
1√

nT g̃−1n

}r
Γ̃N
ij

z
.
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In view of (36), we have∥∥∥∥∥
t

1√
nT g̃−1n

|∥∥∥∥∥
L∞(F )

≤ C ∥Jg̃K∥L∞(F )

≤ C ∥Jgh − gK∥L∞(F )

≤ C
(
∥gh − g∥L∞(T1) + ∥gh − g∥L∞(T2)

)
,

where T1 and T2 are the two N -simplices that share the face F . Here, we used the fact that
g̃ = g + t(gh − g) and g is smooth. Similarly, we have∥∥∥rΓ̃N

ij

z∥∥∥
L∞(F )

≤ C∥Jg̃K∥W 1,∞(F )

≤ C∥Jgh − gK∥W 1,∞(F )

≤ C
(
∥gh − g∥W 1,∞(T1) + ∥gh − g∥W 1,∞(T2)

)
. (43)

Thus,
∥JII(g̃)K∥L∞(F ) ≤ C

(
∥gh − g∥W 1,∞(T1) + ∥gh − g∥W 1,∞(T2)

)
.

From this it follows easily that the same bound holds, possibly with a larger constant C, for the
trace-reversed tensor II(g̃) = II(g̃)−H(g̃)g̃:

∥JII(g̃)K∥L∞(F ) ≤ C
(
∥gh − g∥W 1,∞(T1) + ∥gh − g∥W 1,∞(T2)

)
.

It follows that∣∣∣∣∫
F

〈
JII(g̃)KF , σ|F

〉
g̃
vωF (g̃)

∣∣∣∣
≤ ∥JII(g̃)K∥L∞(F,g̃)∥σ|F ∥L2(F,g̃)∥v∥L2(F,g̃)

≤ C∥JII(g̃)K∥L∞(F )∥σ|F ∥L2(F )∥v∥L2(F )

≤ C

(
2∑

i=1

∥gh − g∥W 1,∞(Ti)

)(
h−1
T1

∥σ∥2L2(T1)
+ hT1 |σ|2H1(T1)

)1/2 (
h−1
T1

∥v∥2L2(T1)
+ hT1 |v|2H1(T1)

)1/2
.

By the shape-regularity of Th, we have C−1 ≤ hT1/hT2 ≤ C for some constant C independent of h
and F , so∣∣∣∣∣∑̊

F

∫
F

〈
JII(g̃)KF , σ|F

〉
g̃
vωF (g̃)

∣∣∣∣∣ ≤ Cmax
T

(
h−1
T ∥gh − g∥W 1,∞(T )

)
×

(∑
T

∥gh − g∥2L2(T ) + h2T |gh − g|2H1(T )

)1/2(∑
T

∥v∥2L2(T ) + h2T |v|2H1(T )

)1/2

.

Remark 4.10. If gh is piecewise constant, then in (43) we have the sharper bound

∥Jgh − gK∥W 1,∞(F ) = ∥Jgh − gK∥L∞(F ) ≤ C
(
∥gh − g∥L∞(T1) + ∥gh − g∥L∞(T2)

)
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because ∂gh
∂xi = 0 and ∂g

∂xi is continuous for each i. This implies that for piecewise constant gh, we
can replace ∥gh − g∥W 1,∞(T ) by ∥gh − g∥L∞(T ) in Lemma 4.9, yielding∣∣∣∣∣∑̊

F

∫
F

〈
JII(g̃)KF , σ|F

〉
g̃
vωF (g̃)

∣∣∣∣∣ ≤ Cmax
T

(
h−1
T ∥gh − g∥L∞(T )

)
×

(∑
T

∥gh − g∥2L2(T ) + h2T |gh − g|2H1(T )

)1/2(∑
T

∥v∥2L2(T ) + h2T |v|2H1(T )

)1/2

.

Now we turn our attention toward the third integral in (42). In preparation for this, we will
first use the shape-regularity assumption to show that the dihedral angles of every N -simplex in
Th (measured in the Euclidean metric) are uniformly bounded above and below.

Lemma 4.11. There exist constants θmin, θmax ∈ (0, π) such that for every h > 0 and every
T ∈ T N

h , the dihedral angles in T (measured in the Euclidean metric) all lie between θmin and θmax.

Proof. This fact is proved in dimension N = 3 in [18, Lemma 3.6]. We generalize their proof
to dimension N ≥ 3 as follows. Given N + 1 points x1, x2, . . . , xN+1 in general position in RN ,
let T = [x1, x2, . . . , xN+1] denote the N -simplex with vertices x1, x2, . . . , xN+1. Consider two
faces F1 = [x1, x3, x4, . . . , xN+1] and F2 = [x2, x3, x4, . . . , xN+1] that intersect along the (N − 2)-
dimensional subsimplex S = [x3, x4, . . . , xN+1]. Throughout what follows, we work in the Euclidean
metric. Let A be the orthogonal projection of x1 onto the (N−1)-dimensional hyperplane containing
F2, and let B be the orthogonal projection of x1 onto the (N−2)-dimensional hyperplane containing
S. Observe that both [x1, A] and [x1, B] are orthogonal to S, since S ⊂ F2. Thus, the triangle
[x1, A,B] is orthogonal to S. This triangle is a right triangle with hypotenuse [x1, B], so the dihedral
angle θST along S satisfies

sin θST =
|[x1, A]|
|[x1, B]|

,

where | · | denotes the Euclidean volume (i.e. length in this case). Obviously, |[x1, B]| is bounded
above by hT , the diameter of T . In addition, |[x1, A]| is bounded from below by 2 times ρT , the
inradius of T . To see why, we generalize the argument in [18, Proposition 2.3], bearing in mind
that our definition of ρT differs from theirs by a factor of 2. Consider the inscribed (N − 1)-sphere
in T , whose center C lies at a distance ρT from F2. Let D be the point where this inscribed sphere
touches F2, and let E be the point diametrically opposite to D on this sphere. The line segment
[D,E] is orthogonal to F2, so the volume of the N -simplex T ′ = [E, x2, x3, x4, . . . , xN+1] satisfies

|T ′| = 1

N
|[D,E]||F2| =

2ρT
N

|F2|.

Since T ′ ⊂ T , we have

|T ′| ≤ |T | = 1

N
|[x1, A]||F2|,

so
2ρT ≤ |[x1, A]|.

Thus,

sin θST ≥ 2ρT
hT

.

The result follows from this bound and the shape-regularity of Th.
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Next we show that Lemma 4.11 remains valid when one measures angles with g rather than the
Euclidean metric δ.

Lemma 4.12. Upon reducing the value of h0 if necessary, there exist constants θmin,g, θmax,g ∈ (0, π)
such that for every h ≤ h0, every T ∈ T N

h , every (N − 2)-simplex S ⊂ ∂T , and every point p ∈ S,
the dihedral angle in T at p (measured by g) lies between θmin,g and θmax,g.

Proof. If there were no such lower bound θmin,g > 0, then there would exist a sequence of N -

simplices T1 ∈ Th1 , T2 ∈ Th2 , . . . with faces F
(1)
1 , F

(2)
1 ⊂ T1, F

(1)
2 , F

(2)
2 ⊂ T2, . . . and points

p1 ∈ F
(1)
1 ∩ F (2)

1 , p2 ∈ F
(1)
2 ∩ F (2)

2 , . . . such that

∠g|Ti (pi)
(F

(1)
i , F

(2)
i ) → 0

as i → ∞, where ∠g(X,Y ) denotes the angle between X and Y as measured by g. Using the
compactness of the Grassmannian, this implies that, after extracting a subsequence which we do
not relabel,

∠δ(F
(1)
i , F

(2)
i ) → 0,

where ∠δ(X,Y ) denotes the angle between X and Y as measured by the Euclidean metric δ. This
contradicts the assumed positive lower bound on the Euclidean dihedral angles. The existence of
an upper bound θmax,g < π is proved similarly.

Now we are ready to estimate the third integral in (42).

Lemma 4.13. We have∣∣∣∣∣∑̊
S

∫
S
⟨ΘS(g̃) g̃|S , σ|S⟩g̃ vωS(g̃)

∣∣∣∣∣
≤ C

(
max
T

h−2
T ∥gh − g∥L∞(T )

)(∑
T

∥gh − g∥2L2(T ) + h2T |gh − g|2H1(T ) + h4T |gh − g|2H2(T )

)1/2

×

(∑
T

∥v∥2L2(T ) + h2T |v|2H1(T ) + h4T |v|2H2(T )

)1/2

.

Proof. Fix an interior (N − 2)-simplex S and an N -simplex T containing S. At any point p along
S, we have

cos θST (g)− cos θST (g̃) = g̃(n
(1)
g̃ , n

(2)
g̃ )− g(n(1)g , n(2)g )

= g̃(n
(1)
g̃ − n(1)g , n

(2)
g̃ − n(2)g ) + g̃(n

(1)
g̃ − n(1)g , n(2)g ) + g̃(n(1)g , n

(2)
g̃ − n(2)g )

+ g̃(n(1)g , n(2)g )− g(n(1)g , n(2)g ),

where n
(1)
g and n

(2)
g are suitably oriented unit normal vectors (with respect to g|T ) to the two faces

of T containing S, and similarly for n
(1)
g̃ and n

(2)
g̃ . Using Lemma 4.6, we see that at the point p,

| cos θST (g̃)− cos θST (g)| ≤ C|g̃ − g| ≤ C|gh − g|

for all h sufficiently small. Since there are constants θmin,g, θmax,g ∈ (0, π) such that θmin,g ≤
θST (g) ≤ θmax,g, we get

|θST (g̃)− θST (g)| ≤ C|gh − g| ≤ C∥gh − g∥L∞(T ).
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Summing over T ⊃ S and noting that
∑

T⊃S θST (g) = 2π, we get

|ΘS(g̃)| = |ΘS(g̃)−ΘS(g)| ≤
∑
T⊃S

|θST (g̃)− θST (g)| ≤ C
∑
T⊃S

∥gh − g∥L∞(T ). (44)

Now we are almost ready to estimate the integral
∫
S ⟨ΘS(g̃) g̃|S , σ|S⟩g̃ vωS(g̃). We first note that

∥v∥2L2(S) ≤ C
(
h−2
T ∥v∥2L2(T ) + |v|2H1(T ) + h2T |v|2H2(T )

)
,

which can be proved using a codimension-2 trace inequality and a scaling argument, or by applying
the codimension-1 trace inequality (38) twice (to v rather than dv). If T1, T2, . . . , Tm are the
N -simplices that share the (N − 2)-simplex S, then we have∣∣∣∣∫

S
⟨ΘS(g̃) g̃|S , σ|S⟩g̃ vωS(g̃)

∣∣∣∣
≤ C∥ΘS(g̃)∥L∞(S,g̃)∥σ|S∥L2(S,g̃)∥v∥L2(S,g̃)

≤ C∥ΘS(g̃)∥L∞(S)∥σ|S∥L2(S)∥v∥L2(S)

≤ C

(
m∑
i=1

∥gh − g∥L∞(Ti)

)(
h−2
T1

∥σ∥2L2(T1)
+ |σ|2H1(T1)

+ h2T1
|σ|2H2(T1)

)1/2
×
(
h−2
T1

∥v∥2L2(T1)
+ |v|2H1(T1)

+ h2T1
|v|2H2(T1)

)1/2
.

The proof is completed by summing over all interior (N − 2)-simplices S and substituting σ =
gh − g.

Collecting our results, we can state a bound on the bilinear form ah(g̃; ·, ·).

Proposition 4.14. For every h ≤ h0, every t ∈ [0, 1], and every v ∈ V , we have (with σ = gh−g),

|ah(g̃;σ, v)| ≤ C

(
1 + max

T
h−2
T ∥gh − g∥L∞(T ) +max

T
h−1
T |gh − g|W 1,∞(T )

)

×

(∑
T

∥gh − g∥2L2(T ) + h2T |gh − g|2H1(T ) + h4T |gh − g|2H2(T )

)1/2

×

(∑
T

∥v∥2L2(T ) + h2T |v|2H1(T ) + h4T |v|2H2(T )

)1/2

.

Proof. Combine Lemmas 4.8, 4.9, and 4.13.

Upon combining Proposition 4.7 with Proposition 4.14, we see that

∥(Rω)dist(gh)− (Rω)(g)∥H−2(Ω) ≤ C

(
1 + max

T
h−2
T ∥gh − g∥L∞(T ) +max

T
h−1
T |gh − g|W 1,∞(T )

)

×

(
∥gh − g∥2L2(Ω) +

∑
T

h2T |gh − g|2H1(T ) +
∑
T

h4T |gh − g|2H2(T )

)1/2

.
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This completes the proof of Theorem 4.1. Corollary 4.3 then follows from (27) and the bounds

∥gh − g∥L2(Ω) ≤ |Ω|1/2−1/p∥gh − g∥Lp(Ω),(∑
T

h2T |gh − g|2H1(T )

)1/2

≤ |Ω|1/2−1/p

(∑
T

hpT |gh − g|p
W 1,p(T )

)1/p

,

(∑
T

h4T |gh − g|2H2(T )

)1/2

≤ |Ω|1/2−1/p

(∑
T

h2pT |gh − g|p
W 2,p(T )

)1/p

,

which hold for all p ∈ [2,∞] (with the obvious modifications for p = ∞).

Remark 4.15. Notice that the analysis above yields

|bh(g̃;σ, v)| = O(hr+1), (by Proposition 4.7), (45)∣∣∣∣∣∑
T

∫
T
⟨G(g̃), σ⟩g̃ vωT (g̃)

∣∣∣∣∣ = O(hr+1), (by Lemma 4.8), (46)∣∣∣∣∣∑̊
F

∫
F

〈
JII(g̃)KF , σ|F

〉
g̃
vωF (g̃)

∣∣∣∣∣ =
{
O(h), if r = 0,

O(h2r), if r ≥ 1,

(by Remark 4.10),

(by Lemma 4.9),
(47)∣∣∣∣∣∑̊

S

∫
S
⟨ΘS(g̃) g̃|S , σ|S⟩g̃ vωS(g̃)

∣∣∣∣∣ = O(h2r), (by Lemma 4.13) (48)

for any optimal-order interpolant gh of g having degree r ≥ 0. Bearing in mind that (46-48) vanish
when N = 2, we see that the above estimates lead to an optimal error estimate ∥(Rω)dist(gh) −
(Rω)(g)∥H−2(Ω) = O(hr+1) in all cases except whenN ≥ 3 and r = 0, where we obtain ∥(Rω)dist(gh)−
(Rω)(g)∥H−2(Ω) = O(1) because of (48). Numerical experiments suggest that these analytical re-
sults are sharp for a general optimal-order interpolant, whereas for the canonical interpolant the
estimate (48) improves to O(h2(r+1)), yielding ∥(Rω)dist(gh)− (Rω)(g)∥H−2(Ω) = O(h) when r = 0;
cf. Figure 2.

5 Numerical examples

In this section we present numerical experiments in dimension N = 2, 3 to illustrate the predicted
convergence rates. The examples were performed in the open source finite element library NGSolve1

[24, 25], where the Regge finite elements are available for arbitrary polynomial order. We construct
an optimal-order interpolant gh of a given metric tensor g as follows. On each element T , the local
L2 best-approximation ḡh|T of g|T is computed. Then the tangential-tangential degrees of freedom
shared by two or more neighboring elements are averaged to obtain a globally tangential-tangential
continuous interpolant gh. We verify in Appendix A that this interpolant is an optimal-order
interpolant in the sense of Remark 4.4 on shape-regular, quasi-uniform triangulations.

To compute the H−2(Ω)-norm of the error f := (Rω)dist(gh)− (Rω)(g) we make use of the fact
that ∥f∥H−2(Ω) is equivalent to ∥u∥H2(Ω), where u ∈ H2

0 (Ω) solves the biharmonic equation ∆2u = f .
This equation will be solved numerically using the (Euclidean) Hellan–Herrmann–Johnson method.
To prevent the discretization error from spoiling the real error, we use for uh two polynomial orders
more than for gh.

1www.ngsolve.org
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We consider in dimension N = 2 the numerical example proposed in [16], where on the square
Ω = (−1, 1)2 the smooth Riemannian metric tensor

g(x, y) :=

(
1 + (∂f∂x )

2 ∂f
∂x

∂f
∂y

∂f
∂x

∂f
∂y 1 + (∂f∂y )

2

)

with f(x, y) := 1
2(x

2 + y2)− 1
12(x

4 + y4) is defined. This metric corresponds to the surface induced
by the embedding

(
x, y
)
7→
(
x, y, f(x, y)

)
, and its exact scalar curvature is given by

R(g)(x, y) =
162(1− x2)(1− y2)

(9 + x2(x2 − 3)2 + y2(y2 − 3)2)2
.

For a three-dimensional example we consider the cube Ω = (−1, 1)3 and the Riemannian metric
tensor induced by the embedding

(
x, y, z

)
7→
(
x, y, z, f(x, y, z)

)
, where f(x, y, z) := 1

2(x
2 + y2 +

z2)− 1
12(x

4 + y4 + z4). The scalar curvature is

R(g)(x, y, z) =
18
(
(1− x2)(1− y2)(9 + q(z)) + (1− y2)(1− z2)(9 + q(x)) + (1− z2)(1− x2)(9 + q(y))

)
(9 + q(x) + q(y) + q(z))2

,

where q(x) = x2(x2 − 3)2.
We start with a structured mesh consisting of 2 ·22k triangles and 6 ·23k tetrahedra, respectively,

in two and three dimensions with h̃ = maxT hT =
√
N 21−k (and minimal edge length 21−k)

for k = 0, 1, . . . . To avoid possible superconvergence due to mesh symmetries, we perturb each
component of the inner mesh vertices by a random number drawn from a uniform distribution in
the range [−h̃ 2−(2N+1)/2, h̃ 2−(2N+1)/2]. As depicted in Figure 1 (left) and listed in Table 1, linear
convergence is observed when N = 2 and gh has polynomial degree r = 0. This is consistent with
Theorem 4.1(i). For r = 1 and r = 2, higher convergence rates are obtained as expected.

In the three-dimensional case, the same convergence rates as forN = 2 are obtained, cf. Figure 1
(right) and Table 2. This indicates that Theorem 4.1(ii) is sharp for r ≥ 1. For r = 0 we observe
numerically linear convergence, which is better than predicted by Theorem 4.1(ii). However, further
investigation suggests that the observed linear convergence for r = 0 is pre-asymptotic. Indeed, to
test if (48) is sharp, we compute the H−2(Ω)-norm of the linear functional

v 7→
∫ 1

0

∑̊
S

∫
S
⟨ΘS(g̃(t)) g̃(t)|S , σ|S⟩g̃(t) vωS(g̃(t)) dt, (49)

where we approximate the parameter integral by a Gauss quadrature of order seven. As depicted
in Figure 2, the norm of this functional for the optimal-order interpolant gh with r = 0 stagnates at
about 4 ·10−4, which is below the overall error of 4.296 ·10−3 for the finest grid; cf. Table 2. There-
fore, the lack of convergence predicted by Theorem 4.1(ii) is not yet visible in Figure 1. For r = 1, 2
the proven rate of O(h2r) for (49) (see (48)) is clearly obtained. Interestingly, using the canonical
interpolant appears to increase the convergence rate of (49) to O(h2(r+1)) (i.e. an increase of two
orders), as observed in Figure 2. Thus, it appears that the canonical interpolant achieves conver-
gence in the lowest-order case. We intend to study this superconvergence phenomenon exhibited
by the canonical interpolant in future work.
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Figure 1: Convergence of the distributional scalar curvature in the H−2(Ω)-norm for N = 2 (left)
and N = 3 (right) with respect to the number of degrees of freedom (ndof) of gh for r = 0, 1, 2.
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Figure 2: Convergence of (49) in the H−2(Ω)-norm with respect to number of degrees of freedom
(ndof) for an optimal-order interpolant and the canonical interpolant (c.i.) for r = 0, 1, 2 in
dimension N = 3.

r = 0 r = 1 r = 2

h Error Order Error Order Error Order

2.828 · 10−0

1.534 · 10−0

8.584 · 10−1

4.609 · 10−1

2.417 · 10−1

1.251 · 10−1

6.260 · 10−2

3.198 · 10−2

2.237 · 10−1

1.945 · 10−1 0.23
6.220 · 10−2 1.96
2.336 · 10−2 1.57
9.434 · 10−3 1.41
4.457 · 10−3 1.14
2.181 · 10−3 1.03
1.067 · 10−3 1.06

8.613 · 10−2

8.448 · 10−2 0.03
4.565 · 10−2 1.06
1.335 · 10−2 1.98
3.689 · 10−3 1.99
9.205 · 10−4 2.11
2.280 · 10−4 2.02
5.777 · 10−5 2.04

2.720 · 10−2

1.364 · 10−2 1.13
2.213 · 10−3 3.13
3.615 · 10−4 2.91
4.189 · 10−5 3.34
5.504 · 10−6 3.08
7.028 · 10−7 2.97
8.784 · 10−8 3.1

Table 1: Same as Figure 1 (left), but in tabular form.
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r = 0 r = 1 r = 2

h Error Order Error Order Error Order

3.464 · 10−0

1.850 · 10−0

9.709 · 10−1

4.999 · 10−1

2.753 · 10−1

1.358 · 10−1

6.878 · 10−2

7.869 · 10−2

3.215 · 10−1 -2.24
1.132 · 10−1 1.62
4.152 · 10−2 1.51
1.838 · 10−2 1.37
8.733 · 10−3 1.05
4.296 · 10−3 1.04

1.359 · 10−1

6.613 · 10−2 1.15
2.912 · 10−2 1.27
8.633 · 10−3 1.83
2.391 · 10−3 2.15
6.194 · 10−4 1.91
1.579 · 10−4 2.01

1.871 · 10−2

4.133 · 10−2 -1.26
5.286 · 10−3 3.19
7.342 · 10−4 2.97
9.753 · 10−5 3.38
1.261 · 10−5 2.89
1.604 · 10−6 3.03

Table 2: Same as Figure 1 (right), but in tabular form.

Israel formalism mentioned in Remark 3.9. EG was supported by NSF grant DMS-2012427. MN
acknowledges support by the Austrian Science Fund (FWF) project F 65.

A Optimal-order interpolation via averaging

Below we verify that the interpolant described in Section 5 is an optimal-order interpolant in the
sense of Remark 4.4, assuming that {Th}h>0 is shape-regular and quasi-uniform. Recall that quasi-
uniformity means that maxT∈T N

h
h/hT is bounded above by a constant independent of h. In what

follows, the letter C may depend on this constant as well as on the parameters N , hT /ρT , r, s, and
t appearing below.

Let ℓ(1), ℓ(2), . . . , ℓ(M) denote the canonical degrees of freedom for the Regge finite element space
of degree r ≥ 0 on Th [21, Equation (2.4b)]. Each linear functional ℓ(i) is associated with a simplex
D ∈ T k

h of dimension k ≥ 1 in the following sense: ℓ(i) sends a symmetric (0, 2)-tensor field g to
the integral of g|D against a (symmetric tensor-valued) polynomial of degree ≤ r − k + 1 over D.

We enumerate these degrees of freedom with a local numbering system as follows. On a
given N -simplex T ∈ T N

h , the degrees of freedom associated with subsimplices of T are denoted
ℓT1 , ℓ

T
2 , . . . , ℓ

T
MT

. If T, T ′ ∈ T N
h are two N -simplices with nonempty intersection, then it may happen

that ℓTi and ℓT
′

j coincide for some and i and j. We let S(i, T ) denote the set of all pairs (j, T ′) for

which ℓTi and ℓT
′

j coincide.

With the above local numbering system, let ψT
1 , ψ

T
2 , . . . , ψ

T
MT

denote the basis for the degree-r
Regge finite element space that is dual to the above degrees of freedom. That is,

ℓTi (ψ
T ′
j ) =

{
1, if (j, T ′) ∈ S(i, T ),
0, otherwise.

Let us assume that the degrees of freedom and basis functions above are first defined on a reference
simplex and then transported to T via an affine transformation. A scaling argument shows that [21,
Lemma 2.11]

∥ψT
i ∥Lp(T ) ≤ Ch

N/p−2
T (50)

and
|ℓTi (g)| ≤ Ch

−N/p+2
T ∥g∥Lp(T ) (51)

for all g in the domain of ℓTi . Note that the −2 and the +2 appearing in the exponents above
arise because of the way that pullbacks of (0, 2)-tensor fields behave under affine transformations;
see [21, Lemma 2.11].
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Let g be a symmetric (0, 2)-tensor field possessing W s,p(Ω)-regularity for every p ∈ [1,∞] and
every s > (N − 1)/p. The canonical interpolation operator Jh onto the Regge finite element space
is defined elementwise by

Jhg|T = J T
h (g|T ) =

MT∑
i=1

ℓTi (g)ψ
T
i .

Let ḡh denote the elementwise L2-projection of g onto the space of discontinuous piecewise
polynomial symmetric (0, 2)-tensor fields of degree at most r. Since Jh is a projector, we have

ḡh|T = J T
h ( ḡh|T ) =

MT∑
i=1

ℓTi (ḡh)ψ
T
i .

The interpolant discussed in Section 5 is defined by

gh|T =

MT∑
i=1

 1

|S(i, T )|
∑

(j,T ′)∈S(i,T )

ℓT
′

j (ḡh)

ψT
i ,

where |S(i, T )| denotes the cardinality of S(i, T ).
To analyze the error gh − g, let p ∈ [1,∞], s ∈ ((N − 1)/p, r + 1], and t ∈ [0, s]. We have

|gh − g|W t,p(T ) ≤ |gh − Jhg|W t,p(T ) + |Jhg − g|W t,p(T ).

The second term satisfies [21, Theorem 2.5]

|Jhg − g|W t,p(T ) ≤ Chs−t
T |g|W s,p(T ). (52)

To bound the first term, we use the fact that

ℓTi (g) =
1

|S(i, T )|
∑

(j,T ′)∈S(i,T )

ℓT
′

j (g)

to write

(gh − Jhg)|T =

MT∑
i=1

1

|S(i, T )|
∑

(j,T ′)∈S(i,T )

ℓT
′

j (ḡh − g)ψT
i .

Using an inverse estimate, (50), (51), and a standard error estimate [14, Proposition 1.135] for the
elementwise L2-projector, we obtain

|gh − Jhg|W t,p(T ) ≤ Ch−t
T ∥gh − Jhg∥Lp(T )

≤ Ch−t
T

∑
T ′:T ′∩T ̸=∅

h
−N/p+2
T ′ ∥ḡh − g∥Lp(T ′)h

N/p−2
T

≤ Ch−t
T

∑
T ′:T ′∩T ̸=∅

∥ḡh − g∥Lp(T ′)

≤ Ch−t
T

∑
T ′:T ′∩T ̸=∅

hsT ′ |g|W s,p(T ′)

≤ Chs−t
T

∑
T ′:T ′∩T ̸=∅

|g|W s,p(T ′). (53)

Here, we have repeatedly used the fact that the ratio hT /hT ′ is bounded uniformly above and below
by positive constants. Combining (52) and (53) shows that the error gh − g satisfies (28).
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[27] S. W. Walker. “Poincaré inequality for a mesh-dependent 2-norm on piecewise linear surfaces
with boundary”. In: Computational Methods in Applied Mathematics 22.1 (2022), pp. 227–
243.

[28] J. W. York Jr. “Role of conformal three-geometry in the dynamics of gravitation”. In: Physical
Review Letters 28.16 (1972), pp. 1082–1085.

36


	Introduction
	Evolution of geometric quantities
	Evolution of the densitized scalar curvature
	Evolution of the mean curvature
	Evolution of angles

	Distributional densitized scalar curvature
	Evolution of the distributional scalar curvature
	Distributional densitized Einstein tensor

	Convergence
	Numerical examples
	Optimal-order interpolation via averaging

