Sets of equations implying semidistributivity and n-permutability

Ralph Freese
Definitions

- Σ is a set of equations.
Definitions

- Σ is a set of equations.
- Σ is idempotent: if F is a function symbol occurring in Σ then $Σ \models x \approx F(x, \ldots, x)$.

A variety V realizes Σ if the function symbols occurring in Σ can be interpreted as V-terms such that the equations of Σ hold.

If $x \approx F(w)$, where w is a vector of not necessarily distinct variables, then F is weakly independent of its ith place for each i with $w_i \neq x$.

So a Maltsev term $p(x, y, z)$ is weakly independent of all of its places.

$Σ'$, the derivative is the augmentation of Σ by equations that say that F is independent of its ith place whenever $Σ$ implies F is weakly independent of its ith place.
Definitions

- Σ is a set of equations.
- Σ is idempotent: if F is a function symbol occurring in Σ then $\Sigma \models x \approx F(x, \ldots, x)$.
- A variety \mathcal{V} realizes Σ if the function symbols occurring in Σ can be interpreted as \mathcal{V}-terms such that the equations of Σ hold.
Definitions

- Σ is a set of equations.
- Σ is idempotent: if F is a function symbol occurring in Σ then $\Sigma \models x \approx F(x, \ldots, x)$.
- A variety \mathcal{V} realizes Σ if the function symbols occurring in Σ can be interpreted as \mathcal{V}-terms such that the equations of Σ hold.
- If $x \approx F(w)$, where w is a vector of not necessarily distinct variables, then F is weakly independent of its i^{th} place for each i with $w_i \neq x$.

Ralph Freese ()
Semidistributivity and n-permutability
Mar 3, 2012 2 / 8
Definitions

- \(\Sigma \) is a set of equations.
- \(\Sigma \) is idempotent: if \(F \) is a function symbol occurring in \(\Sigma \) then \(\Sigma \models x \approx F(x, \ldots, x) \).
- A variety \(V \) realizes \(\Sigma \) if the function symbols occurring in \(\Sigma \) can be interpreted as \(V \)-terms such that the equations of \(\Sigma \) hold.
- If \(x \approx F(w) \), where \(w \) is a vector of not necessarily distinct variables, then \(F \) is weakly independent of its \(i \)-th place for each \(i \) with \(w_i \neq x \). So a Maltsev term \(p(x, y, z) \) is weakly independent of all of its places.
Definitions

- Σ is a set of equations.
- Σ is idempotent: if F is a function symbol occurring in Σ then $\Sigma \models x \approx F(x, \ldots, x)$.
- A variety \forall realizes Σ if the function symbols occurring in Σ can be interpreted as \forall-terms such that the equations of Σ hold.
- If $x \approx F(w)$, where w is a vector of not necessarily distinct variables, then F is weakly independent of its i^{th} place for each i with $w_i \neq x$. So a Maltsev term $p(x, y, z)$ is weakly independent of all of its places.
- Σ', the derivative is the augmentation of Σ by equations that say that F is independent of its i^{th} place whenever Σ implies F is weakly independent of its i^{th} place.
Assume throughout this talk that Σ is idempotent. Then
The Theorems of Dent, Kearnes, Szendrei

Assume throughout this talk that Σ is idempotent. Then

- If Σ' is inconsistent then any variety that realizes Σ is congruence modular (CM).

If V is a CM variety, then V realizes some Σ such that Σ' is inconsistent. (The Day terms work.)

The converse of the first statement is false: if Σ is the lattice axioms, then $\Sigma' = \Sigma$. But the converse of the first statement is true if Σ is linear (no nested composition in the terms occurring in Σ).

For a finite linear, idempotent Σ one can effectively decide if Σ implies CM.

This contrasts McNulty's Theorem that there is no effective way to decide if a (nonlinear) idempotent Σ implies CM.
Assume throughout this talk that Σ is idempotent. Then

- If Σ' is inconsistent then any variety that realizes Σ is congruence modular (CM).
- If \mathcal{V} is a CM variety, then \mathcal{V} realizes some Σ such that Σ' is inconsistent. (The Day terms work.)

The converse of the first statement is false: if Σ is the lattice axioms, then $\Sigma' = \Sigma$. But the converse of the first statement is true if Σ is linear (no nested composition in the terms occurring in Σ).

For a finite linear, idempotent Σ one can effectively decide if Σ implies CM. This contrasts McNulty's Theorem that there is no effective way to decide if a (nonlinear) idempotent Σ implies CM.
Assume throughout this talk that Σ is idempotent. Then

- If Σ' is inconsistent then any variety that realizes Σ is congruence modular (CM).
- If \mathcal{V} is a CM variety, then \mathcal{V} realizes some Σ such that Σ' is inconsistent. (The Day terms work.)
- The converse of the first statement is false: if Σ is the lattice axioms, then $\Sigma' = \Sigma$. But
Assume throughout this talk that Σ is idempotent. Then

- If Σ' is inconsistent then any variety that realizes Σ is congruence modular (CM).
- If \mathcal{V} is a CM variety, then \mathcal{V} realizes some Σ such that Σ' is inconsistent. (The Day terms work.)
- The converse of the first statement is false: if Σ is the lattice axioms, then $\Sigma' = \Sigma$. But
- The converse of the first statement is true if Σ is linear (no nested composition in the terms occurring in Σ).
Assume throughout this talk that Σ is idempotent. Then

- If Σ' is inconsistent then any variety that realizes Σ is congruence modular (CM).
- If \mathcal{V} is a CM variety, then \mathcal{V} realizes some Σ such that Σ' is inconsistent. (The Day terms work.)
- The converse of the first statement is false: if Σ is the lattice axioms, then $\Sigma' = \Sigma$. But
- The converse of the first statement is true if Σ is linear (no nested composition in the terms occurring in Σ).
- For a finite linear, idempotent Σ one can effectively decide if Σ implies CM.
Assume throughout this talk that Σ is idempotent. Then

- If Σ' is inconsistent then any variety that realizes Σ is congruence modular (CM).
- If \mathcal{V} is a CM variety, then \mathcal{V} realizes some Σ such that Σ' is inconsistent. (The Day terms work.)
- The converse of the first statement is false: if Σ is the lattice axioms, then $\Sigma' = \Sigma$. But
- The converse of the first statement is true if Σ is linear (no nested composition in the terms occurring in Σ).
- For a finite linear, idempotent Σ one can effectively decide if Σ implies CM. This contrasts McNulty’s Theorem that there is no effective way to decide if a (nonlinear) idempotent Σ implies CM.
A similar theorem holds for \forall satisfying some congruence identity if

"Σ' is inconsistent"

is replaced by

"$\Sigma^{(k)}$ is inconsistent for some k."

The order derivative, Σ^+, augments Σ by

$$x \approx F(w')$$

whenever $\Sigma \models x \approx F(w)$, where w' is the same as w in every place except one, say i, and $w'_i = x$.
The order derivative, Σ^+, augments Σ by

$$x \approx F(w')$$

whenever $\Sigma \models x \approx F(w)$, where w' is the same as w in every place except one, say i, and $w'_i = x$.

If some iterated order derivative Σ^{+k} of Σ is inconsistent then any variety that realizes Σ is congruence n-permutable, for some n.
The order derivative, Σ^+, augments Σ by

$$x \approx F(w')$$

whenever $\Sigma \models x \approx F(w)$, where w' is the same as w in every place except one, say i, and $w'_i = x$.

If some iterated order derivative Σ^{+k} of Σ is inconsistent then any variety that realizes Σ is congruence n-permutabile, for some n.

If \mathcal{V} is a congruence n-permutabile, for some n, then \mathcal{V} realizes some Σ whose iterated order derivative Σ^{+k} is inconsistent. (The Hagemann-Mitschke terms work.)
The **order derivative**, Σ^+, augments Σ by

$$x \approx F(w')$$

whenever $\Sigma \models x \approx F(w)$, where w' is the same as w in every place except one, say i, and $w'_i = x$.

If some iterated order derivative Σ^{+^k} of Σ is inconsistent then any variety that realizes Σ is congruence n-permutabile, for some n.

If \mathcal{V} is a congruence n-permutabile, for some n, then \mathcal{V} realizes some Σ whose iterated order derivative Σ^{+^k} is inconsistent. (The Hagemann-Mitschke terms work.)

The converse of the first statement is false. But
The order derivative, Σ^+, augments Σ by

$$x \approx F(w')$$

whenever $\Sigma \models x \approx F(w)$, where w' is the same as w in every place except one, say i, and $w'_i = x$.

If some iterated order derivative Σ^{+k} of Σ is inconsistent then any variety that realizes Σ is congruence n-permutabile, for some n.

If \mathcal{V} is a congruence n-permutabile, for some n, then \mathcal{V} realizes some Σ whose iterated order derivative Σ^{+k} is inconsistent. (The Hagemann-Mitschke terms work.)

The converse of the first statement is false. But

The converse of the first statement is true if Σ is linear.
The order derivative, Σ^+, augments Σ by

$$x \approx F(w')$$

whenever $\Sigma \models x \approx F(w)$, where w' is the same as w in every place except one, say i, and $w'_i = x$.

If some iterated order derivative Σ^{+k} of Σ is inconsistent then any variety that realizes Σ is congruence n-permutabile, for some n.

If \mathcal{V} is a congruence n-permutabile, for some n, then \mathcal{V} realizes some Σ whose iterated order derivative Σ^{+k} is inconsistent. (The Hagemann-Mitschke terms work.)

The converse of the first statement is false. But

The converse of the first statement is true if Σ is linear.

For a finite linear, idempotent Σ one can effectively decide if Σ implies congruence n-permutability, for some n.

Semidistributivity

- The **weak derivative**, Σ^*, augments Σ by an equation expressing that F is independent of its i^{th} place whenever

$$\Sigma \models x \approx F(x, \ldots, x, y, x, \ldots, x)$$

where the y is in the i^{th} place.
The weak derivative, Σ^*, augments Σ by an equation expressing that F is independent of its i^{th} place whenever

$$\Sigma \models x \approx F(x, \ldots, x, y, x, \ldots, x)$$

where the y is in the i^{th} place.

If some iterated weak derivative Σ^*_k of Σ is inconsistent then any variety that realizes Σ is congruence semidistributive.
Semidistributivity

- The weak derivative, Σ^*, augments Σ by an equation expressing that F is independent of its i^{th} place whenever

$$\Sigma \models x \approx F(x, \ldots, x, y, x, \ldots, x)$$

where the y is in the i^{th} place.

- If some iterated weak derivative Σ^{*k} of Σ is inconsistent then any variety that realizes Σ is congruence semidistributive.

- If \mathcal{V} is a congruence semidistributive then \mathcal{V} realizes some Σ whose iterated weak derivative Σ^{*k} is inconsistent. (I’ll show my variant of the Hobby-McKenzie-Kearnes-Kiss terms work.)
• The **weak derivative**, Σ^*, augments Σ by an equation expressing that F is independent of its i^{th} place whenever

$$\Sigma \models x \approx F(x, \ldots, x, y, x, \ldots, x)$$

where the y is in the i^{th} place.

• If some iterated weak derivative Σ^{*k} of Σ is inconsistent then any variety that realizes Σ is congruence semidistributive.

• If \mathcal{V} is a congruence semidistributive then \mathcal{V} realizes some Σ whose iterated weak derivative Σ^{*k} is inconsistent. (I’ll show my variant of the Hobby-McKenzie-Kearnes-Kiss terms work.)

• The converse of the first statement is false, **even if Σ is linear**. Nevertheless
Semidistributivity

- The **weak derivative**, Σ^*, augments Σ by an equation expressing that F is independent of its i^{th} place whenever

$$\Sigma \models x \approx F(x,\ldots,x,y,x,\ldots,x)$$

where the y is in the i^{th} place.

- If some iterated weak derivative Σ^{*^k} of Σ is inconsistent then any variety that realizes Σ is congruence semidistributive.

- If \mathcal{V} is a congruence semidistributive then \mathcal{V} realizes some Σ whose iterated weak derivative Σ^{*^k} is inconsistent. (I’ll show my variant of the Hobby-McKenzie-Kearnes-Kiss terms work.)

- The converse of the first statement is false, **even if Σ is linear**. Nevertheless

- For a finite linear, idempotent Σ one **can** effectively decide if Σ implies congruence semidistributivity.
A variety is congruence semidistributive iff there are terms $d_i(x, y, z)$, $i = 0, \ldots, n$, such that

$$d_0(x, y, z) \approx x \quad d_n(x, y, z) \approx z$$

and

Let Σ be these equations. Assume inductively that $\Sigma^* \implies x \approx d_i(x, y, z)$. Then, using the above equations, one can show that $\Sigma^* + 2 \implies x \approx d_i(x, y, z) + 1$. So some iterated weak derivative implies $x \approx d_n(x, y, z) \approx z$ and so is inconsistent.
A variety is congruence semidistributive iff there are terms \(d_i(x, y, z) \), \(i = 0, \ldots, n \), such that

\[
d_0(x, y, z) \approx x \quad d_n(x, y, z) \approx z
\]

and for each \(i \) two of the following three hold:

\[
\begin{align*}
d_i(x, x, y) &\approx d_{i+1}(x, x, y) \\
d_i(x, y, x) &\approx d_{i+1}(x, y, x) \\
d_i(x, y, y) &\approx d_{i+1}(x, y, y)
\end{align*}
\]
A variety is congruence semidistributive iff there are terms
\(d_i(x, y, z), \ i = 0, \ldots, n\), such that

\[d_0(x, y, z) \approx x \quad d_n(x, y, z) \approx z \]

and for each \(i\) two of the following three hold:

\[d_i(x, x, y) \approx d_{i+1}(x, x, y) \]

\[d_i(x, y, x) \approx d_{i+1}(x, y, x) \]

\[d_i(x, y, y) \approx d_{i+1}(x, y, y) \]

Let \(\Sigma\) be these equations. Assume inductively that \(\Sigma^{*k}\) implies \(x \approx d_i(x, y, z)\). Then, using the above equations, one can show that \(\Sigma^{*k+2}\) implies \(x \approx d_{i+1}(x, y, z)\).
A variety is congruence semidistributive iff there are terms $d_i(x, y, z), \ i = 0, \ldots, n$, such that

$$d_0(x, y, z) \approx x \quad d_n(x, y, z) \approx z$$

and for each i two of the following three hold:

$$d_i(x, x, y) \approx d_{i+1}(x, x, y)$$
$$d_i(x, y, x) \approx d_{i+1}(x, y, x)$$
$$d_i(x, y, y) \approx d_{i+1}(x, y, y)$$

Let Σ be these equations. Assume inductively that Σ^{*k} implies $x \approx d_i(x, y, z)$. Then, using the above equations, one can show that Σ^{*k+2} implies $x \approx d_{i+1}(x, y, z)$.

So some iterated weak derivative implies $x \approx d_n(x, y, z) \approx z$ and so is inconsistent.
Theorem

For each property P listed below, given a finite, idempotent, linear set of equations Σ one can effectively decide if every variety that realizes Σ satisfies P.

- Is congruence modular.
- Satisfies a nontrivial congruence identity.
- Is congruence n-permutable for some n.
- Is congruence semidistributive.
- Is congruence meet-semidistributive.
- Is congruence distributive.
Theorem

For each property P listed below, given a finite, idempotent, linear set of equations Σ one can effectively decide if every variety that realizes Σ satisfies P.

- Is congruence modular.
- Satisfies a nontrivial congruence identity.
- Is congruence n-permutable for some n.
- Is congruence semidistributive.
- Is congruence distributive.
Decidable properties of finite, idempotent linear Σ’s

Theorem

For each property P listed below, given a finite, idempotent, linear set of equations Σ one can effectively decide if every variety that realizes Σ satisfies P.

- Is congruence modular.
- Satisfies a nontrivial congruence identity.
Decidable properties of finite, idempotent linear Σ’s

Theorem

For each property P listed below, given a finite, idempotent, linear set of equations Σ one can effectively decide if every variety that realizes Σ satisfies P.

- Is congruence modular.
- Satisfies a nontrivial congruence identity.
- Is congruence n-permutable for some n.

Ralph Freese ()

Semidistributivity and n-permutability

Mar 3, 2012
Decidable properties of finite, idempotent linear Σ’s

Theorem

For each property P listed below, given a finite, idempotent, linear set of equations Σ one can effectively decide if every variety that realizes Σ satisfies P.

- Is congruence modular.
- Satisfies a nontrivial congruence identity.
- Is congruence n-permutable for some n.
- Is congruence semidistributive.
Decidable properties of finite, idempotent linear Σ’s

Theorem

For each property P listed below, given a finite, idempotent, linear set of equations Σ, one can effectively decide if every variety that realizes Σ satisfies P.

- Is congruence modular.
- Satisfies a nontrivial congruence identity.
- Is congruence n-permutable for some n.
- Is congruence semidistributive.
- Is congruence meet-semidistributive.
Decidable properties of finite, idempotent linear Σ’s

Theorem

For each property P listed below, given a finite, idempotent, linear set of equations Σ one can effectively decide if every variety that realizes Σ satisfies P.

- Is congruence modular.
- Satisfies a nontrivial congruence identity.
- Is congruence n-permutable for some n.
- Is congruence semidistributive.
- Is congruence meet-semidistributive.
- Is congruence distributive.